from huggingface_hub import HfApi, create_repo import os # --- Configuration --- # 1. Set the path to the local folder containing your clean LoRA adapter. # (Ensure you have removed checkpoints and optimizer files). LOCAL_LORA_PATH = "./gemma-grammar-lora" # 2. Define the name for your new model repository on the Hub. # It's standard to use "YourUsername/YourModelName". REPO_ID = "enoch10jason/gemma-grammar-lora" # --- Upload Script --- def main(): # Ensure the local path exists if not os.path.isdir(LOCAL_LORA_PATH): print(f"❌ Error: Local LoRA path not found at '{LOCAL_LORA_PATH}'") print("Please ensure your clean 'gemma-grammar-lora' folder is inside your project directory.") return api = HfApi() # Create the repository on the Hugging Face Hub (can be private) create_repo(repo_id=REPO_ID, repo_type="model", exist_ok=True, private=True) print(f"Uploading files from '{LOCAL_LORA_PATH}' to '{REPO_ID}'...") # Upload the entire folder. This will automatically use Git LFS for large files. api.upload_folder( folder_path=LOCAL_LORA_PATH, repo_id=REPO_ID, repo_type="model", ) print(f"✅ LoRA adapter uploaded successfully to: https://huggingface.co/{REPO_ID}") if __name__ == "__main__": main()