edouardlgp commited on
Commit
c984fb7
Β·
verified Β·
1 Parent(s): c3cb58a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -40
app.py CHANGED
@@ -45,15 +45,17 @@ log_debug("Initializing RAG model...")
45
  try:
46
  #rag = RAGWithCitations(model_path_or_name=MODEL_CACHE_DIR)
47
  rag = RAGWithCitations(
48
- model_path_or_name="1b_rag",
49
- max_tokens=2048, # Maximum tokens to generate (default: 2048)
50
- temperature=0.0, # Sampling temperature (default: 0.0)
51
- top_p=0.95, # Nucleus sampling parameter (default: 0.95)
52
- repetition_penalty=1.0, # Penalty to reduce repetition (default: 1.0)
53
- trust_remote_code=True, # Whether to trust remote code (default: True)
54
- hf_token=os.getenv("HF_TOKEN")#, # Required for downloading predefined models
55
- # models_dir=MODEL_CACHE_DIR # Custom directory for downloaded models
56
  )
 
 
 
 
 
 
 
 
 
57
 
58
  # Fix the warnings by properly configuring generation parameters
59
  # if hasattr(rag, "model"):
@@ -86,39 +88,39 @@ except Exception as e:
86
  ## Let's a do simple test from the doc --
87
 
88
  # Define query and sources
89
- query = "What is the capital of France?"
90
- log_debug(f"πŸ” Test Query: {query}")
91
-
92
- sources = [
93
- {
94
- "text": "Paris is the capital and most populous city of France.",
95
- "metadata": {"source": "Geographic Encyclopedia", "reliability": "high"}
96
- },
97
- {
98
- "text": "The Eiffel Tower is located in Paris, France.",
99
- "metadata": {"source": "Travel Guide", "year": 2020}
100
- }
101
- ]
102
- log_debug("πŸ“„ Test Sources loaded successfully.")
103
 
104
  # Generate a response
105
- try:
106
- log_debug("🧠 Test rag model on simple example...")
107
- rag1 = RAGWithCitations(
108
- model_path_or_name="PleIAs/Pleias-RAG-350M"
109
- )
110
- response = rag1.generate(query,
111
- sources #,
112
  # do_sample=True, # Enable sampling
113
  # top_p=0.95, # Set top_p for nucleus sampling
114
  # pad_token_id=rag.tokenizer.eos_token_id, # Set pad_token_id to eos_token_id
115
  # attention_mask=None # Ensure attention_mask is passed if needed
116
- )
117
- log_debug("βœ… Test Answer generated successfully.")
118
- log_debug(response["processed"]["clean_answer"])
119
- except Exception as e:
120
- log_debug(f"❌ Test Answer generation failed: {str(e)}")
121
- raise
122
 
123
 
124
 
@@ -180,14 +182,12 @@ def generate_answer(query, pdf_urls_str, debug_state=""):
180
  gen_time = time.time() - start_time
181
  debug_state = log_debug(f"⚑ Generation completed in {gen_time:.2f}s")
182
 
183
- answer = response.get('raw_response', 'No response generated')
184
- backend = response.get('backend_used', 'unknown')
185
 
186
  debug_state = log_debug(f"πŸ’‘ Answer preview: {answer[:200]}...")
187
- debug_state = log_debug(f"πŸ› οΈ Backend used: {backend}")
188
 
189
- full_output = f"{feedback}\n\n### Answer:\n{answer}\n\n_Generated in {gen_time:.2f}s using {backend}_"
190
- return full_output, debug_state
191
 
192
  except Exception as e:
193
  error_msg = f"❌ Generation error: {str(e)}"
 
45
  try:
46
  #rag = RAGWithCitations(model_path_or_name=MODEL_CACHE_DIR)
47
  rag = RAGWithCitations(
48
+ model_path_or_name="PleIAs/Pleias-RAG-350M"
 
 
 
 
 
 
 
49
  )
50
+ # model_path_or_name="1b_rag",
51
+ # max_tokens=2048, # Maximum tokens to generate (default: 2048)
52
+ # temperature=0.0, # Sampling temperature (default: 0.0)
53
+ # top_p=0.95, # Nucleus sampling parameter (default: 0.95)
54
+ # repetition_penalty=1.0, # Penalty to reduce repetition (default: 1.0)
55
+ # trust_remote_code=True, # Whether to trust remote code (default: True)
56
+ # hf_token=os.getenv("HF_TOKEN")#, # Required for downloading predefined models
57
+ # models_dir=MODEL_CACHE_DIR # Custom directory for downloaded models
58
+ # )
59
 
60
  # Fix the warnings by properly configuring generation parameters
61
  # if hasattr(rag, "model"):
 
88
  ## Let's a do simple test from the doc --
89
 
90
  # Define query and sources
91
+ #query = "What is the capital of France?"
92
+ #log_debug(f"πŸ” Test Query: {query}")
93
+
94
+ #sources = [
95
+ # {
96
+ # "text": "Paris is the capital and most populous city of France.",
97
+ # "metadata": {"source": "Geographic Encyclopedia", "reliability": "high"}
98
+ # },
99
+ # {
100
+ # "text": "The Eiffel Tower is located in Paris, France.",
101
+ # "metadata": {"source": "Travel Guide", "year": 2020}
102
+ # }
103
+ #]
104
+ #log_debug("πŸ“„ Test Sources loaded successfully.")
105
 
106
  # Generate a response
107
+ #try:
108
+ # log_debug("🧠 Test rag model on simple example...")
109
+ # rag1 = RAGWithCitations(
110
+ # model_path_or_name="PleIAs/Pleias-RAG-350M"
111
+ # )
112
+ # response = rag1.generate(query,
113
+ # sources #,
114
  # do_sample=True, # Enable sampling
115
  # top_p=0.95, # Set top_p for nucleus sampling
116
  # pad_token_id=rag.tokenizer.eos_token_id, # Set pad_token_id to eos_token_id
117
  # attention_mask=None # Ensure attention_mask is passed if needed
118
+ # )
119
+ # log_debug("βœ… Test Answer generated successfully.")
120
+ # log_debug(response["processed"]["clean_answer"])
121
+ #except Exception as e:
122
+ # log_debug(f"❌ Test Answer generation failed: {str(e)}")
123
+ # raise
124
 
125
 
126
 
 
182
  gen_time = time.time() - start_time
183
  debug_state = log_debug(f"⚑ Generation completed in {gen_time:.2f}s")
184
 
185
+ answer = response["processed"]["clean_answer"]
 
186
 
187
  debug_state = log_debug(f"πŸ’‘ Answer preview: {answer[:200]}...")
188
+ debug_state = log_debug(f"πŸ› οΈ Generated in {gen_time:.2f}s")
189
 
190
+ return answer, debug_state
 
191
 
192
  except Exception as e:
193
  error_msg = f"❌ Generation error: {str(e)}"