update app.py
Browse files- .python-version +1 -0
- app.py +23 -7
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.11
|
app.py
CHANGED
|
@@ -45,16 +45,32 @@ class GradioUIWithExamples(GradioUI):
|
|
| 45 |
super().__init__(agent, **kwargs)
|
| 46 |
self.examples = examples
|
| 47 |
|
|
|
|
| 48 |
def build_interface(self):
|
| 49 |
with gr.Blocks() as demo:
|
| 50 |
-
|
| 51 |
-
gr.Markdown(""
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
If anything I think that it highlights the value of ontologies and associated vocabularies in guiding LLM behavior. Probably a good time to go back and review some notes on DSPy and layer on domain vocabularies...
|
| 57 |
-
""")
|
| 58 |
|
| 59 |
input_box = gr.Textbox(
|
| 60 |
label="Your Question",
|
|
@@ -91,7 +107,7 @@ model = HfApiModel(model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B', token=HF
|
|
| 91 |
agent = CodeAgent(
|
| 92 |
tools=[],
|
| 93 |
model=model,
|
| 94 |
-
additional_authorized_imports=["gradio","pandas","numpy","datasets","duckdb","json","streamlit"],
|
| 95 |
add_base_tools=True
|
| 96 |
)
|
| 97 |
|
|
|
|
| 45 |
super().__init__(agent, **kwargs)
|
| 46 |
self.examples = examples
|
| 47 |
|
| 48 |
+
|
| 49 |
def build_interface(self):
|
| 50 |
with gr.Blocks() as demo:
|
| 51 |
+
# Title Section
|
| 52 |
+
gr.Markdown("## From Answers to Insight - Architecting Evolvable Agentic Systems")
|
| 53 |
+
|
| 54 |
+
# Description Section
|
| 55 |
+
gr.Markdown(
|
| 56 |
+
"""
|
| 57 |
+
**🔬 Architectural Blueprint**: *Production systems require intentional design - combining smolagents' efficiency with Phoenix observability, powered by ontology-driven prompting patterns.*
|
| 58 |
+
"""
|
| 59 |
+
)
|
| 60 |
|
| 61 |
+
# Core Innovation Vectors Section
|
| 62 |
+
with gr.Accordion("Core Innovation Vectors", open=True):
|
| 63 |
+
gr.Markdown(
|
| 64 |
+
"""
|
| 65 |
+
- ✅ **Competency Question Engine**: Structured prompting using domain vocabulary
|
| 66 |
+
- ✅ **Telemetry-First Core**: Phoenix spans capturing full evidence chains, establishing OpenTelemetry metrics pipeline for performance benchmarking
|
| 67 |
+
- ✅ **Domain Foundation**: Smolagents + biomedical vocabulary layer
|
| 68 |
+
- 🛠️ **Human-in-the-Loop Evolution**: Gradio UI with human feedback capture
|
| 69 |
+
- 🛠️ **Benchmarking Rigor**: Validation scorecards and audit framework
|
| 70 |
+
- 🛠️ **Domain Insight Engine**: Knowledge graph grounding and multimodal evidence synthesis
|
| 71 |
+
"""
|
| 72 |
+
)
|
| 73 |
|
|
|
|
|
|
|
| 74 |
|
| 75 |
input_box = gr.Textbox(
|
| 76 |
label="Your Question",
|
|
|
|
| 107 |
agent = CodeAgent(
|
| 108 |
tools=[],
|
| 109 |
model=model,
|
| 110 |
+
additional_authorized_imports=["gradio","pandas","numpy","datasets","duckdb","json","streamlit","requests","json"],
|
| 111 |
add_base_tools=True
|
| 112 |
)
|
| 113 |
|