Spaces:
Runtime error
Runtime error
Update app.py
Browse filesthat was a fine mess Ollie... much cleaner finally
app.py
CHANGED
|
@@ -1,31 +1,51 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import yt_dlp as youtube_dl
|
| 3 |
-
from transformers import pipeline, BitsAndBytesConfig, WhisperForConditionalGeneration
|
| 4 |
-
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 5 |
-
import torch
|
| 6 |
-
from huggingface_hub import CommitScheduler
|
| 7 |
-
import spaces
|
| 8 |
-
import tempfile
|
| 9 |
import os
|
| 10 |
import json
|
|
|
|
| 11 |
from datetime import datetime
|
| 12 |
from pathlib import Path
|
| 13 |
from uuid import uuid4
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 17 |
|
| 18 |
-
MODEL_NAME = "
|
| 19 |
BATCH_SIZE = 8
|
| 20 |
YT_LENGTH_LIMIT_S = 4800 # 1 hour 20 minutes
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# bnb_config = bnb.QuantizationConfig(bits=4)
|
| 28 |
-
pipe = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Define paths and create directory if not exists
|
| 31 |
JSON_DATASET_DIR = Path("json_dataset")
|
|
@@ -40,22 +60,6 @@ scheduler = CommitScheduler(
|
|
| 40 |
path_in_repo="data",
|
| 41 |
)
|
| 42 |
|
| 43 |
-
def _return_yt_html_embed(yt_url):
|
| 44 |
-
video_id = yt_url.split("?v=")[-1]
|
| 45 |
-
HTML_str = (
|
| 46 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
| 47 |
-
" </center>"
|
| 48 |
-
)
|
| 49 |
-
return HTML_str
|
| 50 |
-
|
| 51 |
-
@spaces.GPU
|
| 52 |
-
@lru_cache(maxsize=10)
|
| 53 |
-
def transcribe_audio(inputs, task):
|
| 54 |
-
if inputs is None:
|
| 55 |
-
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 56 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
| 57 |
-
return text
|
| 58 |
-
|
| 59 |
def download_yt_audio(yt_url, filename):
|
| 60 |
info_loader = youtube_dl.YoutubeDL()
|
| 61 |
try:
|
|
@@ -66,13 +70,15 @@ def download_yt_audio(yt_url, filename):
|
|
| 66 |
if file_length > YT_LENGTH_LIMIT_S:
|
| 67 |
yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S))
|
| 68 |
file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length))
|
| 69 |
-
raise gr.Error(
|
|
|
|
|
|
|
| 70 |
ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"}
|
| 71 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
| 72 |
ydl.download([yt_url])
|
| 73 |
|
|
|
|
| 74 |
@spaces.GPU
|
| 75 |
-
@lru_cache(maxsize=10)
|
| 76 |
def yt_transcribe(yt_url, task):
|
| 77 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 78 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
|
@@ -81,40 +87,40 @@ def yt_transcribe(yt_url, task):
|
|
| 81 |
inputs = f.read()
|
| 82 |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
| 83 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
| 84 |
-
text = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
save_transcription(yt_url, text)
|
| 86 |
return text
|
| 87 |
|
|
|
|
| 88 |
def save_transcription(yt_url, transcription):
|
| 89 |
with scheduler.lock:
|
| 90 |
with JSON_DATASET_PATH.open("a") as f:
|
| 91 |
-
json.dump(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
f.write("\n")
|
| 93 |
|
| 94 |
-
@spaces.GPU
|
| 95 |
-
def yt_transcribe2(yt_url, task, max_filesize=75.0):
|
| 96 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
| 97 |
-
|
| 98 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 99 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
| 100 |
-
download_yt_audio(yt_url, filepath)
|
| 101 |
-
with open(filepath, "rb") as f:
|
| 102 |
-
inputs = f.read()
|
| 103 |
-
|
| 104 |
-
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
| 105 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
| 106 |
-
|
| 107 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
| 108 |
-
|
| 109 |
-
return html_embed_str, text
|
| 110 |
-
|
| 111 |
demo = gr.Blocks()
|
| 112 |
|
| 113 |
yt_transcribe_interface = gr.Interface(
|
| 114 |
fn=yt_transcribe,
|
| 115 |
inputs=[
|
| 116 |
-
gr.Textbox(
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
],
|
| 119 |
outputs="text",
|
| 120 |
title="Whisper Large V3: Transcribe YouTube",
|
|
@@ -126,23 +132,9 @@ yt_transcribe_interface = gr.Interface(
|
|
| 126 |
allow_flagging="never",
|
| 127 |
)
|
| 128 |
|
| 129 |
-
yt_transcribe = gr.Interface(
|
| 130 |
-
fn=yt_transcribe2,
|
| 131 |
-
inputs=[
|
| 132 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
| 133 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
| 134 |
-
],
|
| 135 |
-
outputs=["html", "text"],
|
| 136 |
-
title="Whisper Large V3: Transcribe YouTube",
|
| 137 |
-
description=(
|
| 138 |
-
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
| 139 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
| 140 |
-
" arbitrary length."
|
| 141 |
-
),
|
| 142 |
-
allow_flagging="never",
|
| 143 |
-
)
|
| 144 |
-
|
| 145 |
with demo:
|
| 146 |
-
gr.TabbedInterface(
|
|
|
|
|
|
|
| 147 |
|
| 148 |
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
+
import time
|
| 4 |
from datetime import datetime
|
| 5 |
from pathlib import Path
|
| 6 |
from uuid import uuid4
|
| 7 |
+
import tempfile
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import yt_dlp as youtube_dl
|
| 11 |
+
from huggingface_hub import CommitScheduler
|
| 12 |
+
from transformers import (
|
| 13 |
+
BitsAndBytesConfig,
|
| 14 |
+
AutoModelForSpeechSeq2Seq,
|
| 15 |
+
AutoTokenizer,
|
| 16 |
+
AutoFeatureExtractor,
|
| 17 |
+
pipeline,
|
| 18 |
+
)
|
| 19 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 20 |
+
|
| 21 |
+
# import torch # If you're using PyTorch
|
| 22 |
+
import spaces
|
| 23 |
|
| 24 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 25 |
|
| 26 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
| 27 |
BATCH_SIZE = 8
|
| 28 |
YT_LENGTH_LIMIT_S = 4800 # 1 hour 20 minutes
|
| 29 |
|
| 30 |
+
# Quantization
|
| 31 |
+
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
|
| 32 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 33 |
+
MODEL_NAME,
|
| 34 |
+
quantization_config=bnb_config,
|
| 35 |
+
device_map="auto"
|
| 36 |
+
)
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 38 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
| 39 |
|
| 40 |
# bnb_config = bnb.QuantizationConfig(bits=4)
|
| 41 |
+
pipe = pipeline(
|
| 42 |
+
task="automatic-speech-recognition",
|
| 43 |
+
model=model,
|
| 44 |
+
tokenizer=tokenizer,
|
| 45 |
+
feature_extractor=feature_extractor,
|
| 46 |
+
chunk_length_s=30,
|
| 47 |
+
# device=device,
|
| 48 |
+
)
|
| 49 |
|
| 50 |
# Define paths and create directory if not exists
|
| 51 |
JSON_DATASET_DIR = Path("json_dataset")
|
|
|
|
| 60 |
path_in_repo="data",
|
| 61 |
)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def download_yt_audio(yt_url, filename):
|
| 64 |
info_loader = youtube_dl.YoutubeDL()
|
| 65 |
try:
|
|
|
|
| 70 |
if file_length > YT_LENGTH_LIMIT_S:
|
| 71 |
yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S))
|
| 72 |
file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length))
|
| 73 |
+
raise gr.Error(
|
| 74 |
+
f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video."
|
| 75 |
+
)
|
| 76 |
ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"}
|
| 77 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
| 78 |
ydl.download([yt_url])
|
| 79 |
|
| 80 |
+
|
| 81 |
@spaces.GPU
|
|
|
|
| 82 |
def yt_transcribe(yt_url, task):
|
| 83 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 84 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
|
|
|
| 87 |
inputs = f.read()
|
| 88 |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
| 89 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
| 90 |
+
text = pipe(
|
| 91 |
+
inputs,
|
| 92 |
+
batch_size=BATCH_SIZE,
|
| 93 |
+
generate_kwargs={"task": task},
|
| 94 |
+
return_timestamps=True,
|
| 95 |
+
)["text"]
|
| 96 |
save_transcription(yt_url, text)
|
| 97 |
return text
|
| 98 |
|
| 99 |
+
|
| 100 |
def save_transcription(yt_url, transcription):
|
| 101 |
with scheduler.lock:
|
| 102 |
with JSON_DATASET_PATH.open("a") as f:
|
| 103 |
+
json.dump(
|
| 104 |
+
{
|
| 105 |
+
"url": yt_url,
|
| 106 |
+
"transcription": transcription,
|
| 107 |
+
"datetime": datetime.now().isoformat(),
|
| 108 |
+
},
|
| 109 |
+
f,
|
| 110 |
+
)
|
| 111 |
f.write("\n")
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
demo = gr.Blocks()
|
| 114 |
|
| 115 |
yt_transcribe_interface = gr.Interface(
|
| 116 |
fn=yt_transcribe,
|
| 117 |
inputs=[
|
| 118 |
+
gr.Textbox(
|
| 119 |
+
lines=1,
|
| 120 |
+
placeholder="Paste the URL to a YouTube video here",
|
| 121 |
+
label="YouTube URL",
|
| 122 |
+
),
|
| 123 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
| 124 |
],
|
| 125 |
outputs="text",
|
| 126 |
title="Whisper Large V3: Transcribe YouTube",
|
|
|
|
| 132 |
allow_flagging="never",
|
| 133 |
)
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
with demo:
|
| 136 |
+
gr.TabbedInterface(
|
| 137 |
+
[yt_transcribe_interface], ["YouTube"]
|
| 138 |
+
)
|
| 139 |
|
| 140 |
demo.queue().launch()
|