Spaces:
Runtime error
Runtime error
update app
Browse files
app.py
CHANGED
|
@@ -9,44 +9,46 @@ import pandas as pd
|
|
| 9 |
import gradio as gr
|
| 10 |
import yt_dlp as youtube_dl
|
| 11 |
from transformers import (
|
| 12 |
-
BitsAndBytesConfig,
|
| 13 |
AutoModelForSpeechSeq2Seq,
|
| 14 |
AutoTokenizer,
|
| 15 |
AutoFeatureExtractor,
|
| 16 |
pipeline,
|
| 17 |
)
|
| 18 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 19 |
-
import torch
|
| 20 |
from datasets import load_dataset, Dataset, DatasetDict
|
| 21 |
import spaces
|
| 22 |
|
| 23 |
# Constants
|
| 24 |
-
MODEL_NAME = "openai/whisper-large-v3"
|
| 25 |
-
BATCH_SIZE = 8
|
| 26 |
-
YT_LENGTH_LIMIT_S =
|
| 27 |
DATASET_NAME = "dwb2023/yt-transcripts-v3"
|
| 28 |
|
| 29 |
# Environment setup
|
| 30 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 31 |
|
| 32 |
# Model setup
|
| 33 |
-
bnb_config = BitsAndBytesConfig(
|
| 34 |
-
load_in_4bit=True,
|
| 35 |
-
bnb_4bit_use_double_quant=True,
|
| 36 |
-
bnb_4bit_quant_type="nf4",
|
| 37 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 41 |
MODEL_NAME,
|
| 42 |
-
quantization_config=bnb_config,
|
| 43 |
use_cache=False,
|
| 44 |
device_map="auto"
|
| 45 |
)
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 48 |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
| 49 |
|
|
|
|
| 50 |
pipe = pipeline(
|
| 51 |
task="automatic-speech-recognition",
|
| 52 |
model=model,
|
|
@@ -56,7 +58,12 @@ pipe = pipeline(
|
|
| 56 |
)
|
| 57 |
|
| 58 |
def reset_and_update_dataset(new_data):
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
schema = {
|
| 61 |
"url": pd.Series(dtype="str"),
|
| 62 |
"transcription": pd.Series(dtype="str"),
|
|
@@ -67,22 +74,24 @@ def reset_and_update_dataset(new_data):
|
|
| 67 |
"description": pd.Series(dtype="str"),
|
| 68 |
"datetime": pd.Series(dtype="datetime64[ns]")
|
| 69 |
}
|
| 70 |
-
|
| 71 |
-
# Create an empty DataFrame with the defined schema
|
| 72 |
df = pd.DataFrame(schema)
|
| 73 |
-
|
| 74 |
-
# Append the new data
|
| 75 |
df = pd.concat([df, pd.DataFrame([new_data])], ignore_index=True)
|
| 76 |
-
|
| 77 |
-
# Convert back to dataset
|
| 78 |
updated_dataset = Dataset.from_pandas(df)
|
| 79 |
-
|
| 80 |
-
# Push the updated dataset to the hub
|
| 81 |
dataset_dict = DatasetDict({"train": updated_dataset})
|
| 82 |
dataset_dict.push_to_hub(DATASET_NAME)
|
| 83 |
print("Dataset reset and updated successfully!")
|
| 84 |
|
| 85 |
def download_yt_audio(yt_url, filename):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
info_loader = youtube_dl.YoutubeDL()
|
| 87 |
try:
|
| 88 |
info = info_loader.extract_info(yt_url, download=False)
|
|
@@ -104,15 +113,20 @@ def download_yt_audio(yt_url, filename):
|
|
| 104 |
|
| 105 |
@spaces.GPU(duration=120)
|
| 106 |
def yt_transcribe(yt_url, task):
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
dataset = load_dataset(DATASET_NAME, split="train")
|
| 109 |
-
|
| 110 |
-
# Check if the transcription already exists
|
| 111 |
for row in dataset:
|
| 112 |
if row['url'] == yt_url:
|
| 113 |
-
return row['transcription']
|
| 114 |
-
|
| 115 |
-
# If transcription does not exist, perform the transcription
|
| 116 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 117 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
| 118 |
info = download_yt_audio(yt_url, filepath)
|
|
@@ -126,54 +140,56 @@ def yt_transcribe(yt_url, task):
|
|
| 126 |
generate_kwargs={"task": task},
|
| 127 |
return_timestamps=True,
|
| 128 |
)["text"]
|
| 129 |
-
|
| 130 |
-
# Extract additional fields
|
| 131 |
-
try:
|
| 132 |
-
title = info.get("title", "N/A")
|
| 133 |
-
duration = info.get("duration", 0)
|
| 134 |
-
uploader = info.get("uploader", "N/A")
|
| 135 |
-
upload_date = info.get("upload_date", "N/A")
|
| 136 |
-
description = info.get("description", "N/A")
|
| 137 |
-
except KeyError:
|
| 138 |
-
title = "N/A"
|
| 139 |
-
duration = 0
|
| 140 |
-
uploader = "N/A"
|
| 141 |
-
upload_date = "N/A"
|
| 142 |
-
description = "N/A"
|
| 143 |
-
|
| 144 |
-
save_transcription(yt_url, text, title, duration, uploader, upload_date, description)
|
| 145 |
return text
|
| 146 |
|
| 147 |
-
def save_transcription(yt_url, transcription,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
data = {
|
| 149 |
"url": yt_url,
|
| 150 |
"transcription": transcription,
|
| 151 |
-
"title": title,
|
| 152 |
-
"duration": duration,
|
| 153 |
-
"uploader": uploader,
|
| 154 |
-
"upload_date": upload_date,
|
| 155 |
-
"description": description,
|
| 156 |
"datetime": datetime.now().isoformat()
|
| 157 |
}
|
| 158 |
-
|
| 159 |
-
# Load the existing dataset
|
| 160 |
dataset = load_dataset(DATASET_NAME, split="train")
|
| 161 |
-
|
| 162 |
-
# Convert to pandas dataframe
|
| 163 |
df = dataset.to_pandas()
|
| 164 |
-
|
| 165 |
-
# Append the new data
|
| 166 |
df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)
|
| 167 |
-
|
| 168 |
-
# Convert back to dataset
|
| 169 |
updated_dataset = Dataset.from_pandas(df)
|
| 170 |
-
|
| 171 |
-
# Push the updated dataset to the hub
|
| 172 |
dataset_dict = DatasetDict({"train": updated_dataset})
|
| 173 |
dataset_dict.push_to_hub(DATASET_NAME)
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
demo = gr.Blocks()
|
| 176 |
|
|
|
|
| 177 |
yt_transcribe_interface = gr.Interface(
|
| 178 |
fn=yt_transcribe,
|
| 179 |
inputs=[
|
|
@@ -185,20 +201,45 @@ yt_transcribe_interface = gr.Interface(
|
|
| 185 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
| 186 |
],
|
| 187 |
outputs="text",
|
| 188 |
-
title="
|
| 189 |
description=(
|
| 190 |
-
f"
|
| 191 |
-
|
| 192 |
-
\n- [{DATASET_NAME}](https://huggingface.co/datasets/{DATASET_NAME}/viewer) dataset
|
| 193 |
-
\n- [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) model
|
| 194 |
-
"""
|
| 195 |
),
|
| 196 |
allow_flagging="never",
|
| 197 |
)
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
with demo:
|
| 200 |
gr.TabbedInterface(
|
| 201 |
-
[yt_transcribe_interface
|
|
|
|
| 202 |
)
|
| 203 |
|
| 204 |
-
demo.queue().launch()
|
|
|
|
| 9 |
import gradio as gr
|
| 10 |
import yt_dlp as youtube_dl
|
| 11 |
from transformers import (
|
|
|
|
| 12 |
AutoModelForSpeechSeq2Seq,
|
| 13 |
AutoTokenizer,
|
| 14 |
AutoFeatureExtractor,
|
| 15 |
pipeline,
|
| 16 |
)
|
| 17 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 18 |
+
import torch
|
| 19 |
from datasets import load_dataset, Dataset, DatasetDict
|
| 20 |
import spaces
|
| 21 |
|
| 22 |
# Constants
|
| 23 |
+
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
| 24 |
+
BATCH_SIZE = 8 # Optimized for better GPU utilization
|
| 25 |
+
YT_LENGTH_LIMIT_S = 10800 # 3 hours
|
| 26 |
DATASET_NAME = "dwb2023/yt-transcripts-v3"
|
| 27 |
|
| 28 |
# Environment setup
|
| 29 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 30 |
|
| 31 |
# Model setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 33 |
MODEL_NAME,
|
|
|
|
| 34 |
use_cache=False,
|
| 35 |
device_map="auto"
|
| 36 |
)
|
| 37 |
|
| 38 |
+
# Flash Attention setup for memory and speed optimization if supported
|
| 39 |
+
try:
|
| 40 |
+
from flash_attn import flash_attn_fn
|
| 41 |
+
model.config.use_flash_attention = True
|
| 42 |
+
except ImportError:
|
| 43 |
+
print("Flash Attention is not available. Proceeding without it.")
|
| 44 |
+
|
| 45 |
+
# Note: torch.compile is not compatible with Flash Attention or the chunked long-form algorithm.
|
| 46 |
+
|
| 47 |
+
# Processor setup
|
| 48 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 49 |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
| 50 |
|
| 51 |
+
# Pipeline setup
|
| 52 |
pipe = pipeline(
|
| 53 |
task="automatic-speech-recognition",
|
| 54 |
model=model,
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
def reset_and_update_dataset(new_data):
|
| 61 |
+
"""
|
| 62 |
+
Resets and updates the dataset with new transcription data.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
new_data (dict): Dictionary containing the new data to be added to the dataset.
|
| 66 |
+
"""
|
| 67 |
schema = {
|
| 68 |
"url": pd.Series(dtype="str"),
|
| 69 |
"transcription": pd.Series(dtype="str"),
|
|
|
|
| 74 |
"description": pd.Series(dtype="str"),
|
| 75 |
"datetime": pd.Series(dtype="datetime64[ns]")
|
| 76 |
}
|
|
|
|
|
|
|
| 77 |
df = pd.DataFrame(schema)
|
|
|
|
|
|
|
| 78 |
df = pd.concat([df, pd.DataFrame([new_data])], ignore_index=True)
|
|
|
|
|
|
|
| 79 |
updated_dataset = Dataset.from_pandas(df)
|
|
|
|
|
|
|
| 80 |
dataset_dict = DatasetDict({"train": updated_dataset})
|
| 81 |
dataset_dict.push_to_hub(DATASET_NAME)
|
| 82 |
print("Dataset reset and updated successfully!")
|
| 83 |
|
| 84 |
def download_yt_audio(yt_url, filename):
|
| 85 |
+
"""
|
| 86 |
+
Downloads audio from a YouTube video using yt_dlp.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
yt_url (str): URL of the YouTube video.
|
| 90 |
+
filename (str): Path to save the downloaded audio.
|
| 91 |
+
|
| 92 |
+
Returns:
|
| 93 |
+
dict: Information about the YouTube video.
|
| 94 |
+
"""
|
| 95 |
info_loader = youtube_dl.YoutubeDL()
|
| 96 |
try:
|
| 97 |
info = info_loader.extract_info(yt_url, download=False)
|
|
|
|
| 113 |
|
| 114 |
@spaces.GPU(duration=120)
|
| 115 |
def yt_transcribe(yt_url, task):
|
| 116 |
+
"""
|
| 117 |
+
Transcribes a YouTube video and saves the transcription if it doesn't already exist.
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
yt_url (str): URL of the YouTube video.
|
| 121 |
+
task (str): Task to perform - "transcribe" or "translate".
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
str: The transcription of the video.
|
| 125 |
+
"""
|
| 126 |
dataset = load_dataset(DATASET_NAME, split="train")
|
|
|
|
|
|
|
| 127 |
for row in dataset:
|
| 128 |
if row['url'] == yt_url:
|
| 129 |
+
return row['transcription']
|
|
|
|
|
|
|
| 130 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 131 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
| 132 |
info = download_yt_audio(yt_url, filepath)
|
|
|
|
| 140 |
generate_kwargs={"task": task},
|
| 141 |
return_timestamps=True,
|
| 142 |
)["text"]
|
| 143 |
+
save_transcription(yt_url, text, info)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
return text
|
| 145 |
|
| 146 |
+
def save_transcription(yt_url, transcription, info):
|
| 147 |
+
"""
|
| 148 |
+
Saves the transcription data to the dataset.
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
yt_url (str): URL of the YouTube video.
|
| 152 |
+
transcription (str): The transcribed text.
|
| 153 |
+
info (dict): Additional information about the video.
|
| 154 |
+
"""
|
| 155 |
data = {
|
| 156 |
"url": yt_url,
|
| 157 |
"transcription": transcription,
|
| 158 |
+
"title": info.get("title", "N/A"),
|
| 159 |
+
"duration": info.get("duration", 0),
|
| 160 |
+
"uploader": info.get("uploader", "N/A"),
|
| 161 |
+
"upload_date": info.get("upload_date", "N/A"),
|
| 162 |
+
"description": info.get("description", "N/A"),
|
| 163 |
"datetime": datetime.now().isoformat()
|
| 164 |
}
|
|
|
|
|
|
|
| 165 |
dataset = load_dataset(DATASET_NAME, split="train")
|
|
|
|
|
|
|
| 166 |
df = dataset.to_pandas()
|
|
|
|
|
|
|
| 167 |
df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)
|
|
|
|
|
|
|
| 168 |
updated_dataset = Dataset.from_pandas(df)
|
|
|
|
|
|
|
| 169 |
dataset_dict = DatasetDict({"train": updated_dataset})
|
| 170 |
dataset_dict.push_to_hub(DATASET_NAME)
|
| 171 |
|
| 172 |
+
@spaces.GPU
|
| 173 |
+
def transcribe(inputs, task):
|
| 174 |
+
"""
|
| 175 |
+
Transcribes an audio input.
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
inputs (str): Path to the audio file.
|
| 179 |
+
task (str): Task to perform - "transcribe" or "translate".
|
| 180 |
+
|
| 181 |
+
Returns:
|
| 182 |
+
str: The transcription of the audio.
|
| 183 |
+
"""
|
| 184 |
+
if inputs is None:
|
| 185 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 186 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
| 187 |
+
return text
|
| 188 |
+
|
| 189 |
+
# Gradio App Setup
|
| 190 |
demo = gr.Blocks()
|
| 191 |
|
| 192 |
+
# YouTube Transcribe Tab
|
| 193 |
yt_transcribe_interface = gr.Interface(
|
| 194 |
fn=yt_transcribe,
|
| 195 |
inputs=[
|
|
|
|
| 201 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
| 202 |
],
|
| 203 |
outputs="text",
|
| 204 |
+
title="YouTube Transcription",
|
| 205 |
description=(
|
| 206 |
+
f"Transcribe and archive YouTube videos using the {MODEL_NAME} model. "
|
| 207 |
+
"The transcriptions are saved for future reference, so repeated requests are faster!"
|
|
|
|
|
|
|
|
|
|
| 208 |
),
|
| 209 |
allow_flagging="never",
|
| 210 |
)
|
| 211 |
|
| 212 |
+
# Microphone Transcribe Tab
|
| 213 |
+
mf_transcribe_interface = gr.Interface(
|
| 214 |
+
fn=transcribe,
|
| 215 |
+
inputs=[
|
| 216 |
+
gr.Audio(sources="microphone", type="filepath"),
|
| 217 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
| 218 |
+
],
|
| 219 |
+
outputs="text",
|
| 220 |
+
title="Microphone Transcription",
|
| 221 |
+
description="Transcribe audio captured through your microphone.",
|
| 222 |
+
allow_flagging="never",
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
# File Upload Transcribe Tab
|
| 226 |
+
file_transcribe_interface = gr.Interface(
|
| 227 |
+
fn=transcribe,
|
| 228 |
+
inputs=[
|
| 229 |
+
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
| 230 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
| 231 |
+
],
|
| 232 |
+
outputs="text",
|
| 233 |
+
title="Audio File Transcription",
|
| 234 |
+
description="Transcribe uploaded audio files of arbitrary length.",
|
| 235 |
+
allow_flagging="never",
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
# Organize Tabs in the Gradio App
|
| 239 |
with demo:
|
| 240 |
gr.TabbedInterface(
|
| 241 |
+
[yt_transcribe_interface, mf_transcribe_interface, file_transcribe_interface],
|
| 242 |
+
["YouTube", "Microphone", "Audio File"]
|
| 243 |
)
|
| 244 |
|
| 245 |
+
demo.queue().launch()
|