Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| import time | |
| from datetime import datetime | |
| from pathlib import Path | |
| import tempfile | |
| import pandas as pd | |
| import gradio as gr | |
| import yt_dlp as youtube_dl | |
| from transformers import pipeline | |
| from transformers.pipelines.audio_utils import ffmpeg_read | |
| import torch | |
| from datasets import load_dataset, Dataset, DatasetDict | |
| import spaces | |
| # Constants | |
| MODEL_NAME = "openai/whisper-large-v3-turbo" | |
| BATCH_SIZE = 8 # Optimized for better GPU utilization | |
| YT_LENGTH_LIMIT_S = 10800 # 3 hours | |
| DATASET_NAME = "dwb2023/yt-transcripts-v3" | |
| FILE_LIMIT_MB = 1000 | |
| # Environment setup | |
| os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| # Pipeline setup | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=30, | |
| device=device, | |
| ) | |
| def reset_and_update_dataset(new_data): | |
| """ | |
| Resets and updates the dataset with new transcription data. | |
| Args: | |
| new_data (dict): Dictionary containing the new data to be added to the dataset. | |
| """ | |
| schema = { | |
| "url": pd.Series(dtype="str"), | |
| "transcription": pd.Series(dtype="str"), | |
| "title": pd.Series(dtype="str"), | |
| "duration": pd.Series(dtype="int"), | |
| "uploader": pd.Series(dtype="str"), | |
| "upload_date": pd.Series(dtype="datetime64[ns]"), | |
| "description": pd.Series(dtype="str"), | |
| "datetime": pd.Series(dtype="datetime64[ns]") | |
| } | |
| df = pd.DataFrame(schema) | |
| df = pd.concat([df, pd.DataFrame([new_data])], ignore_index=True) | |
| updated_dataset = Dataset.from_pandas(df) | |
| dataset_dict = DatasetDict({"train": updated_dataset}) | |
| dataset_dict.push_to_hub(DATASET_NAME) | |
| print("Dataset reset and updated successfully!") | |
| def download_yt_audio(yt_url, filename): | |
| """ | |
| Downloads audio from a YouTube video using yt_dlp. | |
| Args: | |
| yt_url (str): URL of the YouTube video. | |
| filename (str): Path to save the downloaded audio. | |
| Returns: | |
| dict: Information about the YouTube video. | |
| """ | |
| info_loader = youtube_dl.YoutubeDL() | |
| try: | |
| info = info_loader.extract_info(yt_url, download=False) | |
| except youtube_dl.utils.DownloadError as err: | |
| raise gr.Error(str(err)) | |
| file_length = info["duration"] | |
| if file_length > YT_LENGTH_LIMIT_S: | |
| yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S)) | |
| file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length)) | |
| raise gr.Error( | |
| f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video." | |
| ) | |
| ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"} | |
| with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
| ydl.download([yt_url]) | |
| return info | |
| def yt_transcribe(yt_url, task): | |
| """ | |
| Transcribes a YouTube video and saves the transcription if it doesn't already exist. | |
| Args: | |
| yt_url (str): URL of the YouTube video. | |
| task (str): Task to perform - "transcribe" or "translate". | |
| Returns: | |
| str: The transcription of the video. | |
| """ | |
| dataset = load_dataset(DATASET_NAME, split="train") | |
| for row in dataset: | |
| if row['url'] == yt_url: | |
| return row['transcription'] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| filepath = os.path.join(tmpdirname, "video.mp4") | |
| info = download_yt_audio(yt_url, filepath) | |
| with open(filepath, "rb") as f: | |
| video_data = f.read() | |
| inputs = ffmpeg_read(video_data, pipe.feature_extractor.sampling_rate) | |
| inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
| text = pipe( | |
| inputs, | |
| batch_size=BATCH_SIZE, | |
| generate_kwargs={"task": task}, | |
| return_timestamps=True, | |
| )["text"] | |
| save_transcription(yt_url, text, info) | |
| return text | |
| def save_transcription(yt_url, transcription, info): | |
| """ | |
| Saves the transcription data to the dataset. | |
| Args: | |
| yt_url (str): URL of the YouTube video. | |
| transcription (str): The transcribed text. | |
| info (dict): Additional information about the video. | |
| """ | |
| data = { | |
| "url": yt_url, | |
| "transcription": transcription, | |
| "title": info.get("title", "N/A"), | |
| "duration": info.get("duration", 0), | |
| "uploader": info.get("uploader", "N/A"), | |
| "upload_date": info.get("upload_date", "N/A"), | |
| "description": info.get("description", "N/A"), | |
| "datetime": datetime.now().isoformat() | |
| } | |
| dataset = load_dataset(DATASET_NAME, split="train") | |
| df = dataset.to_pandas() | |
| df = pd.concat([df, pd.DataFrame([data])], ignore_index=True) | |
| updated_dataset = Dataset.from_pandas(df) | |
| dataset_dict = DatasetDict({"train": updated_dataset}) | |
| dataset_dict.push_to_hub(DATASET_NAME) | |
| def transcribe(inputs, task): | |
| """ | |
| Transcribes an audio input. | |
| Args: | |
| inputs (str): Path to the audio file. | |
| task (str): Task to perform - "transcribe" or "translate". | |
| Returns: | |
| str: The transcription of the audio. | |
| """ | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
| text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
| return text | |
| # Gradio App Setup | |
| demo = gr.Blocks() | |
| # YouTube Transcribe Tab | |
| yt_transcribe_interface = gr.Interface( | |
| fn=yt_transcribe, | |
| inputs=[ | |
| gr.Textbox( | |
| lines=1, | |
| placeholder="Paste the URL to a YouTube video here", | |
| label="YouTube URL", | |
| ), | |
| gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
| ], | |
| outputs="text", | |
| title="YouTube Transcription", | |
| description=( | |
| f"Transcribe and archive YouTube videos using the {MODEL_NAME} model. " | |
| "The transcriptions are saved for future reference, so repeated requests are faster!" | |
| ), | |
| allow_flagging="never", | |
| ) | |
| # Microphone Transcribe Tab | |
| mf_transcribe_interface = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources="microphone", type="filepath"), | |
| gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
| ], | |
| outputs="text", | |
| title="Microphone Transcription", | |
| description="Transcribe audio captured through your microphone.", | |
| allow_flagging="never", | |
| ) | |
| # File Upload Transcribe Tab | |
| file_transcribe_interface = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
| gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
| ], | |
| outputs="text", | |
| title="Audio File Transcription", | |
| description="Transcribe uploaded audio files of arbitrary length.", | |
| allow_flagging="never", | |
| ) | |
| # Organize Tabs in the Gradio App | |
| with demo: | |
| gr.TabbedInterface( | |
| [yt_transcribe_interface, mf_transcribe_interface, file_transcribe_interface], | |
| ["YouTube", "Microphone", "Audio File"] | |
| ) | |
| demo.queue().launch(ssr_mode=False) |