Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import yt_dlp as youtube_dl | |
| from transformers import pipeline | |
| from transformers.pipelines.audio_utils import ffmpeg_read | |
| import torch | |
| from huggingface_hub import CommitScheduler | |
| import spaces | |
| import tempfile | |
| import os | |
| import json | |
| from datetime import datetime | |
| from pathlib import Path | |
| from uuid import uuid4 | |
| os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
| MODEL_NAME = "openai/whisper-large-v3" | |
| BATCH_SIZE = 8 | |
| YT_LENGTH_LIMIT_S = 4800 # 1 hour 20 minutes | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device) | |
| # Define paths and create directory if not exists | |
| JSON_DATASET_DIR = Path("json_dataset") | |
| JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True) | |
| JSON_DATASET_PATH = JSON_DATASET_DIR / f"transcriptions-{uuid4()}.json" | |
| # Initialize CommitScheduler for saving data to Hugging Face Dataset | |
| scheduler = CommitScheduler( | |
| repo_id="transcript-dataset-repo", | |
| repo_type="dataset", | |
| folder_path=JSON_DATASET_DIR, | |
| path_in_repo="data", | |
| ) | |
| def transcribe_audio(inputs, task): | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
| text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
| return text | |
| def download_yt_audio(yt_url, filename): | |
| info_loader = youtube_dl.YoutubeDL() | |
| try: | |
| info = info_loader.extract_info(yt_url, download=False) | |
| except youtube_dl.utils.DownloadError as err: | |
| raise gr.Error(str(err)) | |
| file_length = info["duration"] | |
| if file_length > YT_LENGTH_LIMIT_S: | |
| yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S)) | |
| file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length)) | |
| raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
| ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"} | |
| with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
| ydl.download([yt_url]) | |
| def yt_transcribe(yt_url, task): | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| filepath = os.path.join(tmpdirname, "video.mp4") | |
| download_yt_audio(yt_url, filepath) | |
| with open(filepath, "rb") as f: | |
| inputs = f.read() | |
| inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
| inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
| text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
| save_transcription(yt_url, text) | |
| return text | |
| def save_transcription(yt_url, transcription): | |
| with scheduler.lock: | |
| with JSON_DATASET_PATH.open("a") as f: | |
| json.dump({"url": yt_url, "transcription": transcription, "datetime": datetime.now().isoformat()}, f) | |
| f.write("\n") | |
| demo = gr.Blocks() | |
| yt_transcribe_interface = gr.Interface( | |
| fn=yt_transcribe, | |
| inputs=[ | |
| gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
| gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") | |
| ], | |
| outputs="text", | |
| title="Whisper Large V3: Transcribe YouTube", | |
| description=( | |
| "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" | |
| f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" | |
| " arbitrary length." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| with demo: | |
| gr.TabbedInterface([yt_transcribe_interface], ["YouTube"]) | |
| demo.queue().launch() | |