File size: 10,541 Bytes
d898dac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import torch
from models import MultimodalSentimentModel
import os
import cv2
import numpy as np
import subprocess
import torchaudio
from transformers import AutoTokenizer
import whisper
import sys
EMOTION_MAP = {0: "anger", 1: "disgust", 2: "fear",
3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
SENTIMENT_MAP = {0: "negative", 1: "neutral", 2: "positive"}
def install_ffmpeg():
print("Starting Ffmpeg installation...")
subprocess.check_call([sys.executable, "-m", "pip",
"install", "--upgrade", "pip"])
subprocess.check_call([sys.executable, "-m", "pip",
"install", "--upgrade", "setuptools"])
try:
subprocess.check_call([sys.executable, "-m", "pip",
"install", "ffmpeg-python"])
print("Installed ffmpeg-python successfully")
except subprocess.CalledProcessError as e:
print("Failed to install ffmpeg-python via pip")
try:
subprocess.check_call([
"wget",
"https://johnvansickle.com/ffmpeg/releases/ffmpeg-release-amd64-static.tar.xz",
"-O", "/tmp/ffmpeg.tar.xz"
])
subprocess.check_call([
"tar", "-xf", "/tmp/ffmpeg.tar.xz", "-C", "/tmp/"
])
result = subprocess.run(
["find", "/tmp", "-name", "ffmpeg", "-type", "f"],
capture_output=True,
text=True
)
ffmpeg_path = result.stdout.strip()
subprocess.check_call(["cp", ffmpeg_path, "/usr/local/bin/ffmpeg"])
subprocess.check_call(["chmod", "+x", "/usr/local/bin/ffmpeg"])
print("Installed static FFmpeg binary successfully")
except Exception as e:
print(f"Failed to install static FFmpeg: {e}")
try:
result = subprocess.run(["ffmpeg", "-version"],
capture_output=True, text=True, check=True)
print("FFmpeg version:")
print(result.stdout)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
print("FFmpeg installation verification failed")
return False
class VideoProcessor:
def process_video(self, video_path):
cap = cv2.VideoCapture(video_path)
frames = []
try:
if not cap.isOpened():
raise ValueError(f"Video not found: {video_path}")
# Try and read first frame to validate video
ret, frame = cap.read()
if not ret or frame is None:
raise ValueError(f"Video not found: {video_path}")
# Reset index to not skip first frame
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
while len(frames) < 30 and cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, (224, 224))
frame = frame / 255.0
frames.append(frame)
except Exception as e:
raise ValueError(f"Video error: {str(e)}")
finally:
cap.release()
if (len(frames) == 0):
raise ValueError("No frames could be extracted")
# Pad or truncate frames
if len(frames) < 30:
frames += [np.zeros_like(frames[0])] * (30 - len(frames))
else:
frames = frames[:30]
# Before permute: [frames, height, width, channels]
# After permute: [frames, channels, height, width]
return torch.FloatTensor(np.array(frames)).permute(0, 3, 1, 2)
class AudioProcessor:
def extract_features(self, video_path, max_length=300):
audio_path = video_path.replace('.mp4', '.wav')
try:
subprocess.run([
'ffmpeg',
'-i', video_path,
'-vn',
'-acodec', 'pcm_s16le',
'-ar', '16000',
'-ac', '1',
audio_path
], check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
waveform, sample_rate = torchaudio.load(audio_path)
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)
mel_spectrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=16000,
n_mels=64,
n_fft=1024,
hop_length=512
)
mel_spec = mel_spectrogram(waveform)
# Normalize
mel_spec = (mel_spec - mel_spec.mean()) / mel_spec.std()
if mel_spec.size(2) < 300:
padding = 300 - mel_spec.size(2)
mel_spec = torch.nn.functional.pad(mel_spec, (0, padding))
else:
mel_spec = mel_spec[:, :, :300]
return mel_spec
except subprocess.CalledProcessError as e:
raise ValueError(f"Audio extraction error: {str(e)}")
except Exception as e:
raise ValueError(f"Audio error: {str(e)}")
finally:
if os.path.exists(audio_path):
os.remove(audio_path)
class VideoUtteranceProcessor:
def __init__(self):
self.video_processor = VideoProcessor()
self.audio_processor = AudioProcessor()
def extract_segment(self, video_path, start_time, end_time, temp_dir="/tmp"):
os.makedirs(temp_dir, exist_ok=True)
segment_path = os.path.join(
temp_dir, f"segment_{start_time}_{end_time}.mp4")
subprocess.run([
"ffmpeg", "-i", video_path,
"-ss", str(start_time),
"-to", str(end_time),
"-c:v", "libx264",
"-c:a", "aac",
"-y",
segment_path
], check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
if not os.path.exists(segment_path) or os.path.getsize(segment_path) == 0:
raise ValueError("Segment extraction failed: " + segment_path)
return segment_path
def model_fn(model_dir):
# Load the model for inference
if not install_ffmpeg():
raise RuntimeError(
"FFmpeg installation failed - required for inference")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = MultimodalSentimentModel().to(device)
model_path = os.path.join(model_dir, 'model.pth')
if not os.path.exists(model_path):
model_path = os.path.join(model_dir, "saved_models", 'checkpoint.pth')
if not os.path.exists(model_path):
raise FileNotFoundError(
"Model file not found in path " + model_path)
print("Loading model from path: " + model_path)
model.load_state_dict(torch.load(
model_path, map_location=device, weights_only=True))
model.eval()
return {
'model': model,
'tokenizer': AutoTokenizer.from_pretrained('bert-base-uncased'),
'transcriber': whisper.load_model(
"base",
device="cpu" if device.type == "cpu" else device,
),
'device': device
}
def predict_fn(input_data, model_dict):
model = model_dict['model']
tokenizer = model_dict['tokenizer']
device = model_dict['device']
video_path = input_data['video_path']
result = model_dict['transcriber'].transcribe(
video_path, word_timestamps=True)
utterance_processor = VideoUtteranceProcessor()
predictions = []
for segment in result["segments"]:
try:
segment_path = utterance_processor.extract_segment(
video_path,
segment["start"],
segment["end"]
)
video_frames = utterance_processor.video_processor.process_video(
segment_path)
audio_features = utterance_processor.audio_processor.extract_features(
segment_path)
text_inputs = tokenizer(
segment["text"],
padding="max_length",
truncation=True,
max_length=128,
return_tensors="pt"
)
# Move to device
text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
video_frames = video_frames.unsqueeze(0).to(device)
audio_features = audio_features.unsqueeze(0).to(device)
# Get predictions
with torch.inference_mode():
outputs = model(text_inputs, video_frames, audio_features)
emotion_probs = torch.softmax(outputs["emotions"], dim=1)[0]
sentiment_probs = torch.softmax(
outputs["sentiments"], dim=1)[0]
emotion_values, emotion_indices = torch.topk(emotion_probs, 3)
sentiment_values, sentiment_indices = torch.topk(
sentiment_probs, 3)
predictions.append({
"start_time": segment["start"],
"end_time": segment["end"],
"text": segment["text"],
"emotions": [
{"label": EMOTION_MAP[idx.item()], "confidence": conf.item()} for idx, conf in zip(emotion_indices, emotion_values)
],
"sentiments": [
{"label": SENTIMENT_MAP[idx.item()], "confidence": conf.item()} for idx, conf in zip(sentiment_indices, sentiment_values)
]
})
except Exception as e:
print("Segment failed inference: " + str(e))
finally:
# Cleanup
if os.path.exists(segment_path):
os.remove(segment_path)
return {"utterances": predictions}
def process_local_video(video_path, model_dir="."):
model_dict = model_fn(model_dir)
input_data = {'video_path': video_path}
predictions = predict_fn(input_data, model_dict)
for utterance in predictions["utterances"]:
print("\nUtterance:")
print(f"""Start: {utterance['start_time']}s, End: {
utterance['end_time']}s""")
print(f"Text: {utterance['text']}")
print("\n Top Emotions:")
for emotion in utterance['emotions']:
print(f"{emotion['label']}: {emotion['confidence']:.2f}")
print("\n Top Sentiments:")
for sentiment in utterance['sentiments']:
print(f"{sentiment['label']}: {sentiment['confidence']:.2f}")
print("-"*50)
if __name__ == "__main__":
process_local_video("./dia2_utt3.mp4") |