File size: 17,054 Bytes
4fce4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

import os
import subprocess
import sys
import re
import numpy as np
from PIL import Image
import gradio as gr
import requests
import json
from dotenv import load_dotenv

# Attempt to install pytesseract if not found
try:
    import pytesseract
except ImportError:
    subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'pytesseract'])
    import pytesseract

# AFTER importing pytesseract, then set the path
try:
    # First try the default path
    if os.path.exists('/usr/bin/tesseract'):
        pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
    # Try to find it on the PATH
    else:
        tesseract_path = subprocess.check_output(['which', 'tesseract']).decode().strip()
        if tesseract_path:
            pytesseract.pytesseract.tesseract_cmd = tesseract_path
except:
    # If all else fails, try the default installation path
    pytesseract.pytesseract.tesseract_cmd = 'tesseract'

# Load environment variables
load_dotenv()

# Mistral API Key
MISTRAL_API_KEY = "GlrVCBWyvTYjWGKl5jqtK4K41uWWJ79F"

# Import and configure Mistral API
def analyze_ingredients_with_mistral(ingredients_list, health_conditions=None):
    """
    Use Mistral AI to analyze ingredients and provide health insights.
    """
    if not ingredients_list:
        return "No ingredients detected or provided."

    # Prepare the list of ingredients for the prompt
    ingredients_text = ", ".join(ingredients_list)

    # Create a prompt for Mistral
    if health_conditions and health_conditions.strip():
        prompt = f"""
        Analyze the following food ingredients for a person with these health conditions: {health_conditions}
        Ingredients: {ingredients_text}
        For each ingredient:
        1. Provide its potential health benefits
        2. Identify any potential risks
        3. Note if it may affect the specified health conditions
        Then provide an overall assessment of the product's suitability for someone with the specified health conditions.
        Format your response in markdown with clear headings and sections.
        """
    else:
        prompt = f"""
        Analyze the following food ingredients:
        Ingredients: {ingredients_text}
        For each ingredient:
        1. Provide its potential health benefits
        2. Identify any potential risks or common allergens associated with it
        Then provide an overall assessment of the product's general health profile.
        Format your response in markdown with clear headings and sections.
        """

    try:
        headers = {
            "Authorization": f"Bearer {MISTRAL_API_KEY}",
            "Content-Type": "application/json"
        }
        data = {
            "model": "mistral-small",  # Or another suitable model
            "messages": [{"role": "user", "content": prompt}],
            "temperature": 0.7,
        }

        response = requests.post("https://api.mistral.ai/v1/chat/completions", headers=headers, json=data)

        if response.status_code == 200:
            analysis = response.json()['choices'][0]['message']['content']
        else:
            return dummy_analyze(ingredients_list, health_conditions) + f"\n\n(Using fallback analysis: Mistral API Error - {response.status_code} - {response.text})"

        # Add disclaimer
        disclaimer = """
        ## Disclaimer
        This analysis is provided for informational purposes only and should not replace professional medical advice.
        Always consult with a healthcare provider regarding dietary restrictions, allergies, or health conditions.
        """

        return analysis + disclaimer

    except Exception as e:
        # Fallback to basic analysis if API call fails
        return dummy_analyze(ingredients_list, health_conditions) + f"\n\n(Using fallback analysis: {str(e)})"


# Dummy analysis function for when API is not available
def dummy_analyze(ingredients_list, health_conditions=None):
    ingredients_text = ", ".join(ingredients_list)

    report = f"""
    # Ingredient Analysis Report
    ## Detected Ingredients
    {", ".join([i.title() for i in ingredients_list])}
    ## Overview
    This is a simulated analysis since the Mistral API call failed. In the actual application,
    the ingredients would be analyzed by Mistral for their health implications.
    ## Health Considerations
    """

    if health_conditions:
        report += f"""
        The analysis would specifically consider these health concerns: {health_conditions}
        """
    else:
        report += """
        No specific health concerns were provided, so a general analysis would be performed.
        """

    report += """
    ## Disclaimer
    This analysis is provided for informational purposes only and should not replace professional medical advice.
    Always consult with a healthcare provider regarding dietary restrictions, allergies, or health conditions.
    """

    return report

# Function to extract text from images using OCR
def extract_text_from_image(image):
    try:
        if image is None:
            return "No image captured. Please try again."

        # Verify Tesseract executable is accessible
        try:
            subprocess.run([pytesseract.pytesseract.tesseract_cmd, "--version"],
                          check=True, capture_output=True, text=True)
        except (subprocess.SubprocessError, FileNotFoundError):
            return "Tesseract OCR is not installed or not properly configured. Please check installation."

        # Import necessary libraries
        import cv2
        import numpy as np
        from PIL import Image, ImageOps, ImageEnhance

        # First approach: Invert the image for light text on dark background
        inverted_image = ImageOps.invert(image)

        # Try OCR on inverted image
        custom_config = r'--oem 3 --psm 6 -l eng --dpi 300'
        inverted_text = pytesseract.image_to_string(inverted_image, config=custom_config)

        # Second approach: OpenCV processing for colored backgrounds
        img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

        # Convert to grayscale
        gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)

        # Apply bilateral filter to preserve edges while reducing noise
        filtered = cv2.bilateralFilter(gray, 11, 17, 17)

        # Adaptive thresholding to handle varied lighting
        thresh = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                      cv2.THRESH_BINARY, 11, 2)

        # Invert the image (if text is light on dark background)
        inverted_thresh = cv2.bitwise_not(thresh)

        # Try OCR on processed image
        cv_text = pytesseract.image_to_string(
            Image.fromarray(inverted_thresh),
            config=custom_config
        )

        # Third approach: Color filtering to isolate text from colored background
        # Convert to HSV color space to better isolate colors
        hsv = cv2.cvtColor(img_cv, cv2.COLOR_BGR2HSV)

        # Create a mask to extract light colored text (assuming white/light text)
        lower_white = np.array([0, 0, 150])
        upper_white = np.array([180, 30, 255])
        mask = cv2.inRange(hsv, lower_white, upper_white)

        # Apply morphological operations to clean up the mask
        kernel = np.ones((2, 2), np.uint8)
        mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
        mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)

        # Improve character connectivity
        mask = cv2.dilate(mask, kernel, iterations=1)

        # Try OCR on color filtered image
        color_text = pytesseract.image_to_string(
            Image.fromarray(mask),
            config=r'--oem 3 --psm 6 -l eng --dpi 300'
        )

        # Fourth approach: Try directly with the image but with different configs
        direct_text = pytesseract.image_to_string(
            image,
            config=r'--oem 3 --psm 11 -l eng --dpi 300'
        )

        # Compare results and select the best one
        results = [inverted_text, cv_text, color_text, direct_text]

        # Select the result with the most alphanumeric characters
        def count_alphanumeric(text):
            return sum(c.isalnum() for c in text)

        best_text = max(results, key=count_alphanumeric)

        # If still poor results, try with explicit text color inversion in tesseract
        if count_alphanumeric(best_text) < 20:
            # Try with tesseract's built-in inversion
            neg_text = pytesseract.image_to_string(
                image,
                config=r'--oem 3 --psm 6 -c textord_heavy_nr=1 -c textord_debug_printable=0 -l eng --dpi 300'
            )
            if count_alphanumeric(neg_text) > count_alphanumeric(best_text):
                best_text = neg_text

        # Clean up the text
        best_text = re.sub(r'[^\w\s,;:%.()\n\'-]', '', best_text)
        best_text = best_text.replace('\n\n', '\n')

        # Special case for ingredients list format
        if "ingredient" in best_text.lower() or any(x in best_text.lower() for x in ["sugar", "cocoa", "milk", "contain"]):
            # Specific cleaning for ingredient lists
            best_text = re.sub(r'([a-z])([A-Z])', r'\1 \2', best_text)  # Add space between lowercase and uppercase
            best_text = re.sub(r'(\d+)([a-zA-Z])', r'\1 \2', best_text)  # Add space between number and letter

        if not best_text.strip():
            return "No text could be extracted. Ensure image is clear and readable."

        return best_text.strip()
    except Exception as e:
        return f"Error extracting text: {str(e)}"

# Function to parse ingredients from text
def parse_ingredients(text):
    if not text:
        return []

    # Clean up the text
    text = re.sub(r'^ingredients:?\s*', '', text.lower(), flags=re.IGNORECASE)

    # Remove common OCR errors and extraneous characters
    text = re.sub(r'[|\\/@#$%^&*()_+=]', '', text)

    # Replace common OCR errors
    text = re.sub(r'\bngredients\b', 'ingredients', text)

    # Handle common OCR misreads
    replacements = {
        '0': 'o', 'l': 'i', '1': 'i',
        '5': 's', '8': 'b', 'Q': 'g',
    }

    for error, correction in replacements.items():
        text = text.replace(error, correction)

    # Split by common ingredient separators
    ingredients = re.split(r',|;|\n', text)

    # Clean up each ingredient
    cleaned_ingredients = []
    for i in ingredients:
        i = i.strip().lower()
        if i and len(i) > 1:  # Ignore single characters which are likely OCR errors
            cleaned_ingredients.append(i)

    return cleaned_ingredients


# Function to process input based on method (camera, upload, or manual entry)
def process_input(input_method, text_input, camera_input, upload_input, health_conditions):
    if input_method == "Camera":
        if camera_input is not None:
            extracted_text = extract_text_from_image(camera_input)
            # If OCR fails, inform the user they can try manual entry
            if "Error" in extracted_text or "No text could be extracted" in extracted_text:
                return extracted_text + "\n\nPlease try using the 'Manual Entry' option instead."

            ingredients = parse_ingredients(extracted_text)
            return analyze_ingredients_with_mistral(ingredients, health_conditions)
        else:
            return "No camera image captured. Please try again."

    elif input_method == "Image Upload":
        if upload_input is not None:
            extracted_text = extract_text_from_image(upload_input)
            # If OCR fails, inform the user they can try manual entry
            if "Error" in extracted_text or "No text could be extracted" in extracted_text:
                return extracted_text + "\n\nPlease try using the 'Manual Entry' option instead."

            ingredients = parse_ingredients(extracted_text)
            return analyze_ingredients_with_mistral(ingredients, health_conditions)
        else:
            return "No image uploaded. Please try again."

    elif input_method == "Manual Entry":
        if text_input and text_input.strip():
            ingredients = parse_ingredients(text_input)
            return analyze_ingredients_with_mistral(ingredients, health_conditions)
        else:
            return "No ingredients entered. Please try again."

    return "Please provide input using one of the available methods."

# Create the Gradio interface
with gr.Blocks(title="AI Ingredient Scanner") as app:
    gr.Markdown("# AI Ingredient Scanner")
    gr.Markdown("Scan product ingredients and analyze them for health benefits, risks, and potential allergens.")

    with gr.Row():
        with gr.Column():
            input_method = gr.Radio(
                ["Camera", "Image Upload", "Manual Entry"],
                label="Input Method",
                value="Camera"
            )

            # Camera input
            camera_input = gr.Image(label="Capture ingredients with camera", type="pil", visible=True)

            # Image upload
            upload_input = gr.Image(label="Upload image of ingredients label", type="pil", visible=False)

            # Text input
            text_input = gr.Textbox(
                label="Enter ingredients list (comma separated)",
                placeholder="milk, sugar, flour, eggs, vanilla extract",
                lines=3,
                visible=False
            )

            # Health conditions input - now optional and more flexible
            health_conditions = gr.Textbox(
                label="Enter your health concerns (optional)",
                placeholder="diabetes, high blood pressure, peanut allergy, etc.",
                lines=2,
                info="The AI will automatically analyze ingredients for these conditions"
            )

            analyze_button = gr.Button("Analyze Ingredients")

        with gr.Column():
            output = gr.Markdown(label="Analysis Results")
            extracted_text_output = gr.Textbox(label="Extracted Text (for verification)", lines=3)

    # Show/hide inputs based on selection
    def update_visible_inputs(choice):
        return {
            upload_input: gr.update(visible=(choice == "Image Upload")),
            camera_input: gr.update(visible=(choice == "Camera")),
            text_input: gr.update(visible=(choice == "Manual Entry"))
        }

    input_method.change(update_visible_inputs, input_method, [upload_input, camera_input, text_input])

    # Extract and display the raw text (for verification purposes)
    def show_extracted_text(input_method, text_input, camera_input, upload_input):
        if input_method == "Camera" and camera_input is not None:
            return extract_text_from_image(camera_input)
        elif input_method == "Image Upload" and upload_input is not None:
            return extract_text_from_image(upload_input)
        elif input_method == "Manual Entry":
            return text_input
        return "No input detected"

    # Set up event handlers
    analyze_button.click(
        fn=process_input,
        inputs=[input_method, text_input, camera_input, upload_input, health_conditions],
        outputs=output
    )

    analyze_button.click(
        fn=show_extracted_text,
        inputs=[input_method, text_input, camera_input, upload_input],
        outputs=extracted_text_output
    )

    gr.Markdown("### How to use")
    gr.Markdown("""
    1. Choose your input method (Camera, Image Upload, or Manual Entry)
    2. Take a photo of the ingredients label or enter ingredients manually
    3. Optionally enter your health concerns
    4. Click "Analyze Ingredients" to get your personalized analysis
    The AI will automatically analyze the ingredients, their health implications, and their potential impact on your specific health concerns.
    """)

    gr.Markdown("### Examples of what you can ask")
    gr.Markdown("""
    The system can handle a wide range of health concerns, such as:
    - General health goals: "trying to reduce sugar intake" or "watching sodium levels"
    - Medical conditions: "diabetes" or "hypertension"
    - Allergies: "peanut allergy" or "shellfish allergy"
    - Dietary restrictions: "vegetarian" or "gluten-free diet"
    - Multiple conditions: "diabetes, high cholesterol, and lactose intolerance"
    The AI will tailor its analysis to your specific needs.
    """)

    gr.Markdown("### Tips for best results")
    gr.Markdown("""
    - Hold the camera steady and ensure good lighting
    - Focus directly on the ingredients list
    - Make sure the text is clear and readable
    - Be specific about your health concerns for more targeted analysis
    """)

    gr.Markdown("### Disclaimer")
    gr.Markdown("""
    This tool is for informational purposes only and should not replace professional medical advice.
    Always consult with a healthcare provider regarding dietary restrictions, allergies, or health conditions.
    """)

# Launch the app
if __name__ == "__main__":
    app.launch()