|
|
import os |
|
|
import subprocess |
|
|
import sys |
|
|
import re |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import gradio as gr |
|
|
import requests |
|
|
import json |
|
|
from dotenv import load_dotenv |
|
|
|
|
|
|
|
|
try: |
|
|
import pytesseract |
|
|
except ImportError: |
|
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'pytesseract']) |
|
|
import pytesseract |
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
if os.path.exists('/usr/bin/tesseract'): |
|
|
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' |
|
|
|
|
|
else: |
|
|
tesseract_path = subprocess.check_output(['which', 'tesseract']).decode().strip() |
|
|
if tesseract_path: |
|
|
pytesseract.pytesseract.tesseract_cmd = tesseract_path |
|
|
except: |
|
|
|
|
|
pytesseract.pytesseract.tesseract_cmd = 'tesseract' |
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
MISTRAL_API_KEY = "GlrVCBWyvTYjWGKl5jqtK4K41uWWJ79F" |
|
|
META_LLAMA_API_KEY = "22068836-e455-47e7-8293-373f9e4c84fb" |
|
|
|
|
|
|
|
|
def extract_ingredients_with_llama(image=None, product_name=None): |
|
|
""" |
|
|
Use Meta's LLaMA API to extract ingredients from a product image or name |
|
|
""" |
|
|
if not image and not product_name: |
|
|
return "No product information provided. Please provide an image or product name." |
|
|
|
|
|
|
|
|
headers = { |
|
|
"Authorization": f"Bearer {META_LLAMA_API_KEY}", |
|
|
"Content-Type": "application/json" |
|
|
} |
|
|
|
|
|
|
|
|
if image: |
|
|
|
|
|
import base64 |
|
|
from io import BytesIO |
|
|
|
|
|
buffered = BytesIO() |
|
|
image.save(buffered, format="JPEG") |
|
|
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
|
|
|
|
prompt = [ |
|
|
{"role": "system", "content": "You are an expert at identifying food products and their ingredients from images. Extract the product name and list all ingredients you can identify."}, |
|
|
{"role": "user", "content": [ |
|
|
{"type": "text", "text": "Look at this food product image and list all the ingredients it contains. If you can identify the product name, mention that first, then list all ingredients in a comma-separated format."}, |
|
|
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_str}"}} |
|
|
]} |
|
|
] |
|
|
else: |
|
|
|
|
|
prompt = [ |
|
|
{"role": "system", "content": "You are an expert at identifying food product ingredients. Your task is to list all common ingredients for the specified product."}, |
|
|
{"role": "user", "content": f"Please list all the common ingredients typically found in {product_name}. Provide the ingredients in a comma-separated format."} |
|
|
] |
|
|
|
|
|
|
|
|
try: |
|
|
data = { |
|
|
"model": "meta-llama/Llama-3-8b-hf", |
|
|
"messages": prompt, |
|
|
"temperature": 0.2, |
|
|
"max_tokens": 800 |
|
|
} |
|
|
|
|
|
|
|
|
print(f"Sending request to LLaMA API with data structure: {json.dumps(data)[:300]}...") |
|
|
|
|
|
response = requests.post( |
|
|
"https://api.llama-api.com/chat/completions", |
|
|
headers=headers, |
|
|
json=data, |
|
|
timeout=30 |
|
|
) |
|
|
|
|
|
if response.status_code == 200: |
|
|
text_response = response.json()['choices'][0]['message']['content'] |
|
|
print(f"LLaMA API response received: {text_response[:100]}...") |
|
|
|
|
|
|
|
|
|
|
|
ingredients_section = re.search(r'ingredients:?\s*([^\.]+)', text_response, re.IGNORECASE) |
|
|
if ingredients_section: |
|
|
ingredients_text = ingredients_section.group(1) |
|
|
else: |
|
|
|
|
|
|
|
|
comma_lists = re.findall(r'([^\.;:]+(?:,\s*[^\.;:]+){2,})', text_response) |
|
|
if comma_lists: |
|
|
ingredients_text = max(comma_lists, key=len) |
|
|
else: |
|
|
ingredients_text = text_response |
|
|
|
|
|
|
|
|
ingredients = parse_ingredients(ingredients_text) |
|
|
|
|
|
|
|
|
product_match = re.search(r'product(?:\s+name)?(?:\s+is)?:?\s*([^\.;,\n]+)', text_response, re.IGNORECASE) |
|
|
if product_match: |
|
|
product_name = product_match.group(1).strip() |
|
|
return ingredients, product_name |
|
|
|
|
|
return ingredients, None |
|
|
|
|
|
else: |
|
|
print(f"Error response from LLaMA API: {response.status_code} - {response.text}") |
|
|
|
|
|
return f"Error calling Meta LLaMA API: {response.status_code} - {response.text}", None |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Exception in LLaMA API call: {str(e)}") |
|
|
return f"Error extracting ingredients with LLaMA: {str(e)}", None |
|
|
|
|
|
|
|
|
def analyze_ingredients_with_mistral(ingredients_list, health_conditions=None, product_name=None): |
|
|
""" |
|
|
Use Mistral AI to analyze ingredients and provide health insights. |
|
|
""" |
|
|
if not ingredients_list or (isinstance(ingredients_list, list) and len(ingredients_list) == 0): |
|
|
return "No ingredients detected or provided." |
|
|
|
|
|
|
|
|
if isinstance(ingredients_list, str) and "Error" in ingredients_list: |
|
|
|
|
|
return dummy_analyze(product_name if product_name else "Unknown product", health_conditions) |
|
|
|
|
|
|
|
|
if isinstance(ingredients_list, list): |
|
|
ingredients_text = ", ".join(ingredients_list) |
|
|
else: |
|
|
ingredients_text = ingredients_list |
|
|
|
|
|
|
|
|
product_info = f"Product Name: {product_name}\n" if product_name else "" |
|
|
|
|
|
if health_conditions and health_conditions.strip(): |
|
|
prompt = f""" |
|
|
{product_info}Analyze the following food ingredients for a person with these health conditions: {health_conditions} |
|
|
Ingredients: {ingredients_text} |
|
|
For each ingredient: |
|
|
1. Provide its potential health benefits |
|
|
2. Identify any potential risks |
|
|
3. Note if it may affect the specified health conditions |
|
|
Then provide an overall assessment of the product's suitability for someone with the specified health conditions. |
|
|
Format your response in markdown with clear headings and sections. |
|
|
""" |
|
|
else: |
|
|
prompt = f""" |
|
|
{product_info}Analyze the following food ingredients: |
|
|
Ingredients: {ingredients_text} |
|
|
For each ingredient: |
|
|
1. Provide its potential health benefits |
|
|
2. Identify any potential risks or common allergens associated with it |
|
|
Then provide an overall assessment of the product's general health profile. |
|
|
Format your response in markdown with clear headings and sections. |
|
|
""" |
|
|
|
|
|
try: |
|
|
headers = { |
|
|
"Authorization": f"Bearer {MISTRAL_API_KEY}", |
|
|
"Content-Type": "application/json" |
|
|
} |
|
|
data = { |
|
|
"model": "mistral-small", |
|
|
"messages": [{"role": "user", "content": prompt}], |
|
|
"temperature": 0.7, |
|
|
} |
|
|
|
|
|
response = requests.post( |
|
|
"https://api.mistral.ai/v1/chat/completions", |
|
|
headers=headers, |
|
|
json=data, |
|
|
timeout=30 |
|
|
) |
|
|
|
|
|
if response.status_code == 200: |
|
|
analysis = response.json()['choices'][0]['message']['content'] |
|
|
else: |
|
|
print(f"Error response from Mistral API: {response.status_code} - {response.text}") |
|
|
return dummy_analyze(ingredients_list if isinstance(ingredients_list, list) else [ingredients_text], health_conditions) + f"\n\n(Using fallback analysis: Mistral API Error - {response.status_code} - {response.text})" |
|
|
|
|
|
|
|
|
disclaimer = """ |
|
|
## Disclaimer |
|
|
This analysis is provided for informational purposes only and should not replace professional medical advice. |
|
|
Always consult with a healthcare provider regarding dietary restrictions, allergies, or health conditions. |
|
|
""" |
|
|
|
|
|
return analysis + disclaimer |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Exception in Mistral API call: {str(e)}") |
|
|
|
|
|
return dummy_analyze(ingredients_list if isinstance(ingredients_list, list) else [ingredients_text], health_conditions) + f"\n\n(Using fallback analysis: {str(e)})" |
|
|
|
|
|
|
|
|
|
|
|
def dummy_analyze(ingredients_list, health_conditions=None): |
|
|
if isinstance(ingredients_list, str): |
|
|
ingredients_text = ingredients_list |
|
|
else: |
|
|
ingredients_text = ", ".join(ingredients_list) |
|
|
|
|
|
report = f""" |
|
|
# Ingredient Analysis Report |
|
|
## Detected Ingredients |
|
|
{", ".join([i.title() for i in ingredients_list]) if isinstance(ingredients_list, list) else ingredients_text} |
|
|
## Overview |
|
|
This is a simulated analysis since the API call failed. In the actual application, |
|
|
the ingredients would be analyzed by an AI model for their health implications. |
|
|
## Health Considerations |
|
|
""" |
|
|
|
|
|
if health_conditions: |
|
|
report += f""" |
|
|
The analysis would specifically consider these health concerns: {health_conditions} |
|
|
""" |
|
|
else: |
|
|
report += """ |
|
|
No specific health concerns were provided, so a general analysis would be performed. |
|
|
""" |
|
|
|
|
|
report += """ |
|
|
## Disclaimer |
|
|
This analysis is provided for informational purposes only and should not replace professional medical advice. |
|
|
Always consult with a healthcare provider regarding dietary restrictions, allergies, or health conditions. |
|
|
""" |
|
|
|
|
|
return report |
|
|
|
|
|
|
|
|
def extract_text_from_image(image): |
|
|
try: |
|
|
if image is None: |
|
|
return "No image captured. Please try again." |
|
|
|
|
|
|
|
|
try: |
|
|
subprocess.run([pytesseract.pytesseract.tesseract_cmd, "--version"], |
|
|
check=True, capture_output=True, text=True) |
|
|
except (subprocess.SubprocessError, FileNotFoundError): |
|
|
return "Tesseract OCR is not installed or not properly configured. Please check installation." |
|
|
|
|
|
|
|
|
import cv2 |
|
|
import numpy as np |
|
|
from PIL import Image, ImageOps, ImageEnhance |
|
|
|
|
|
|
|
|
inverted_image = ImageOps.invert(image) |
|
|
|
|
|
|
|
|
custom_config = r'--oem 3 --psm 6 -l eng --dpi 300' |
|
|
inverted_text = pytesseract.image_to_string(inverted_image, config=custom_config) |
|
|
|
|
|
|
|
|
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
|
|
|
|
|
|
|
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
|
|
|
filtered = cv2.bilateralFilter(gray, 11, 17, 17) |
|
|
|
|
|
|
|
|
thresh = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, |
|
|
cv2.THRESH_BINARY, 11, 2) |
|
|
|
|
|
|
|
|
inverted_thresh = cv2.bitwise_not(thresh) |
|
|
|
|
|
|
|
|
cv_text = pytesseract.image_to_string( |
|
|
Image.fromarray(inverted_thresh), |
|
|
config=custom_config |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
hsv = cv2.cvtColor(img_cv, cv2.COLOR_BGR2HSV) |
|
|
|
|
|
|
|
|
lower_white = np.array([0, 0, 150]) |
|
|
upper_white = np.array([180, 30, 255]) |
|
|
mask = cv2.inRange(hsv, lower_white, upper_white) |
|
|
|
|
|
|
|
|
kernel = np.ones((2, 2), np.uint8) |
|
|
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) |
|
|
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) |
|
|
|
|
|
|
|
|
mask = cv2.dilate(mask, kernel, iterations=1) |
|
|
|
|
|
|
|
|
color_text = pytesseract.image_to_string( |
|
|
Image.fromarray(mask), |
|
|
config=r'--oem 3 --psm 6 -l eng --dpi 300' |
|
|
) |
|
|
|
|
|
|
|
|
direct_text = pytesseract.image_to_string( |
|
|
image, |
|
|
config=r'--oem 3 --psm 11 -l eng --dpi 300' |
|
|
) |
|
|
|
|
|
|
|
|
results = [inverted_text, cv_text, color_text, direct_text] |
|
|
|
|
|
|
|
|
def count_alphanumeric(text): |
|
|
return sum(c.isalnum() for c in text) |
|
|
|
|
|
best_text = max(results, key=count_alphanumeric) |
|
|
|
|
|
|
|
|
if count_alphanumeric(best_text) < 20: |
|
|
|
|
|
neg_text = pytesseract.image_to_string( |
|
|
image, |
|
|
config=r'--oem 3 --psm 6 -c textord_heavy_nr=1 -c textord_debug_printable=0 -l eng --dpi 300' |
|
|
) |
|
|
if count_alphanumeric(neg_text) > count_alphanumeric(best_text): |
|
|
best_text = neg_text |
|
|
|
|
|
|
|
|
best_text = re.sub(r'[^\w\s,;:%.()\n\'-]', '', best_text) |
|
|
best_text = best_text.replace('\n\n', '\n') |
|
|
|
|
|
|
|
|
if "ingredient" in best_text.lower() or any(x in best_text.lower() for x in ["sugar", "cocoa", "milk", "contain"]): |
|
|
|
|
|
best_text = re.sub(r'([a-z])([A-Z])', r'\1 \2', best_text) |
|
|
best_text = re.sub(r'(\d+)([a-zA-Z])', r'\1 \2', best_text) |
|
|
|
|
|
if not best_text.strip(): |
|
|
return "No text could be extracted. Ensure image is clear and readable." |
|
|
|
|
|
return best_text.strip() |
|
|
except Exception as e: |
|
|
return f"Error extracting text: {str(e)}" |
|
|
|
|
|
|
|
|
def parse_ingredients(text): |
|
|
if not text: |
|
|
return [] |
|
|
|
|
|
|
|
|
text = re.sub(r'^ingredients:?\s*', '', text.lower(), flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
text = re.sub(r'[|\\/@#$%^&*()_+=]', '', text) |
|
|
|
|
|
|
|
|
text = re.sub(r'\bngredients\b', 'ingredients', text) |
|
|
|
|
|
|
|
|
replacements = { |
|
|
'0': 'o', 'l': 'i', '1': 'i', |
|
|
'5': 's', '8': 'b', 'Q': 'g', |
|
|
} |
|
|
|
|
|
for error, correction in replacements.items(): |
|
|
text = text.replace(error, correction) |
|
|
|
|
|
|
|
|
ingredients = re.split(r',|;|\n', text) |
|
|
|
|
|
|
|
|
cleaned_ingredients = [] |
|
|
for i in ingredients: |
|
|
i = i.strip().lower() |
|
|
if i and len(i) > 1: |
|
|
cleaned_ingredients.append(i) |
|
|
|
|
|
return cleaned_ingredients |
|
|
|
|
|
|
|
|
|
|
|
def process_input(input_method, product_name, camera_input, product_photo, health_conditions): |
|
|
if input_method == "Product Photo": |
|
|
if product_photo is not None: |
|
|
|
|
|
ingredients, detected_product = extract_ingredients_with_llama(image=product_photo) |
|
|
|
|
|
|
|
|
if isinstance(ingredients, str) and "Error" in ingredients: |
|
|
print(f"LLaMA API error, using fallback: {ingredients}") |
|
|
return f"Error extracting ingredients. Using fallback analysis.\n\n{dummy_analyze('Unknown food product', health_conditions)}" |
|
|
|
|
|
|
|
|
product_info = "" |
|
|
if detected_product: |
|
|
product_info = f"## Product: {detected_product}\n\n" |
|
|
|
|
|
|
|
|
analysis = analyze_ingredients_with_mistral(ingredients, health_conditions, detected_product) |
|
|
return product_info + analysis |
|
|
else: |
|
|
return "No product image captured. Please try again." |
|
|
|
|
|
elif input_method == "Product Name": |
|
|
if product_name and product_name.strip(): |
|
|
|
|
|
ingredients, _ = extract_ingredients_with_llama(product_name=product_name) |
|
|
|
|
|
|
|
|
if isinstance(ingredients, str) and "Error" in ingredients: |
|
|
print(f"LLaMA API error, using fallback: {ingredients}") |
|
|
return f"Error extracting ingredients. Using fallback analysis.\n\n{dummy_analyze(product_name, health_conditions)}" |
|
|
|
|
|
|
|
|
return analyze_ingredients_with_mistral(ingredients, health_conditions, product_name) |
|
|
else: |
|
|
return "No product name entered. Please try again." |
|
|
|
|
|
elif input_method == "Camera (Ingredients Label)": |
|
|
if camera_input is not None: |
|
|
extracted_text = extract_text_from_image(camera_input) |
|
|
|
|
|
|
|
|
if "Error" in extracted_text or "No text could be extracted" in extracted_text: |
|
|
print(f"OCR failed, trying LLaMA API backup: {extracted_text}") |
|
|
ingredients, detected_product = extract_ingredients_with_llama(image=camera_input) |
|
|
|
|
|
if isinstance(ingredients, str) and "Error" in ingredients: |
|
|
return f"Could not extract ingredients from image. Using fallback analysis.\n\n{dummy_analyze('Unknown food product', health_conditions)}" |
|
|
|
|
|
product_info = "" |
|
|
if detected_product: |
|
|
product_info = f"## Product: {detected_product}\n\n" |
|
|
|
|
|
analysis = analyze_ingredients_with_mistral(ingredients, health_conditions, detected_product) |
|
|
return product_info + "Ingredients extracted using AI image analysis.\n\n" + analysis |
|
|
|
|
|
|
|
|
ingredients = parse_ingredients(extracted_text) |
|
|
return analyze_ingredients_with_mistral(ingredients, health_conditions) |
|
|
else: |
|
|
return "No camera image captured. Please try again." |
|
|
|
|
|
return "Please provide input using one of the available methods." |
|
|
|
|
|
|
|
|
with gr.Blocks(title="AI Ingredient Scanner") as app: |
|
|
gr.Markdown("# AI Ingredient Scanner") |
|
|
gr.Markdown("Analyze product ingredients for health benefits, risks, and potential allergens. Just take a photo of the product or enter its name!") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_method = gr.Radio( |
|
|
["Product Photo", "Product Name", "Camera (Ingredients Label)"], |
|
|
label="Input Method", |
|
|
value="Product Photo", |
|
|
info="Choose how you want to identify the product" |
|
|
) |
|
|
|
|
|
|
|
|
product_name = gr.Textbox( |
|
|
label="Enter product name", |
|
|
placeholder="e.g., Coca-Cola, Oreo Cookies, Lay's Potato Chips", |
|
|
visible=False |
|
|
) |
|
|
|
|
|
|
|
|
product_photo = gr.Image(label="Take a photo of the product", type="pil", visible=True) |
|
|
|
|
|
|
|
|
camera_input = gr.Image(label="Capture ingredients label with camera", type="pil", visible=False) |
|
|
|
|
|
|
|
|
health_conditions = gr.Textbox( |
|
|
label="Enter your health concerns (optional)", |
|
|
placeholder="diabetes, high blood pressure, peanut allergy, etc.", |
|
|
lines=2, |
|
|
info="The AI will automatically analyze ingredients for these conditions" |
|
|
) |
|
|
|
|
|
analyze_button = gr.Button("Analyze Product") |
|
|
|
|
|
with gr.Column(): |
|
|
output = gr.Markdown(label="Analysis Results") |
|
|
extracted_info = gr.Textbox(label="Extracted Information (for verification)", lines=3) |
|
|
|
|
|
|
|
|
def update_visible_inputs(choice): |
|
|
return { |
|
|
product_photo: gr.update(visible=(choice == "Product Photo")), |
|
|
product_name: gr.update(visible=(choice == "Product Name")), |
|
|
camera_input: gr.update(visible=(choice == "Camera (Ingredients Label)")), |
|
|
} |
|
|
|
|
|
input_method.change(update_visible_inputs, input_method, [product_photo, product_name, camera_input]) |
|
|
|
|
|
|
|
|
def show_extracted_info(input_method, product_name, camera_input, product_photo): |
|
|
if input_method == "Product Photo" and product_photo is not None: |
|
|
ingredients, product = extract_ingredients_with_llama(image=product_photo) |
|
|
if isinstance(ingredients, list): |
|
|
return f"Product: {product if product else 'Unknown'}\nIngredients: {', '.join(ingredients)}" |
|
|
else: |
|
|
return ingredients |
|
|
elif input_method == "Product Name" and product_name: |
|
|
ingredients, _ = extract_ingredients_with_llama(product_name=product_name) |
|
|
if isinstance(ingredients, list): |
|
|
return f"Product: {product_name}\nIngredients: {', '.join(ingredients)}" |
|
|
else: |
|
|
return ingredients |
|
|
elif input_method == "Camera (Ingredients Label)" and camera_input is not None: |
|
|
extracted_text = extract_text_from_image(camera_input) |
|
|
return extracted_text |
|
|
return "No input detected" |
|
|
|
|
|
|
|
|
analyze_button.click( |
|
|
fn=process_input, |
|
|
inputs=[input_method, product_name, camera_input, product_photo, health_conditions], |
|
|
outputs=output |
|
|
) |
|
|
|
|
|
analyze_button.click( |
|
|
fn=show_extracted_info, |
|
|
inputs=[input_method, product_name, camera_input, product_photo], |
|
|
outputs=extracted_info |
|
|
) |
|
|
|
|
|
gr.Markdown("### How to use") |
|
|
gr.Markdown(""" |
|
|
1. Choose your input method: |
|
|
- **Product Photo**: Take a photo of the entire product (front, back, or packaging) |
|
|
- **Product Name**: Simply enter the name of the product |
|
|
- **Camera (Ingredients Label)**: Traditional method - take a photo of the ingredients list |
|
|
2. Optionally enter your health concerns |
|
|
3. Click "Analyze Product" to get your personalized analysis |
|
|
|
|
|
The AI will automatically detect the product, extract its ingredients, and analyze them. |
|
|
""") |
|
|
|
|
|
gr.Markdown("### Examples of what you can ask") |
|
|
gr.Markdown(""" |
|
|
The system can handle a wide range of health concerns, such as: |
|
|
- General health goals: "trying to reduce sugar intake" or "watching sodium levels" |
|
|
- Medical conditions: "diabetes" or "hypertension" |
|
|
- Allergies: "peanut allergy" or "shellfish allergy" |
|
|
- Dietary restrictions: "vegetarian" or "gluten-free diet" |
|
|
- Multiple conditions: "diabetes, high cholesterol, and lactose intolerance" |
|
|
The AI will tailor its analysis to your specific needs. |
|
|
""") |
|
|
|
|
|
gr.Markdown("### Tips for best results") |
|
|
gr.Markdown(""" |
|
|
- Hold the camera steady and ensure good lighting |
|
|
- For Product Photo: Capture the entire product package clearly |
|
|
- For Product Name: Be specific (e.g., "Honey Nut Cheerios" instead of just "Cheerios") |
|
|
- For Ingredients Label: Focus directly on the ingredients list text |
|
|
- Be specific about your health concerns for more targeted analysis |
|
|
""") |
|
|
|
|
|
gr.Markdown("### Disclaimer") |
|
|
gr.Markdown(""" |
|
|
This tool is for informational purposes only and should not replace professional medical advice. |
|
|
Always consult with a healthcare provider regarding dietary restrictions, allergies, or health conditions. |
|
|
""") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
app.launch() |