π Pushed initial codebase
Browse files- .gitignore +16 -0
- Dockerfile +16 -0
- README.md +5 -5
- requirements.txt +11 -0
- src/__pycache__/app.cpython-310.pyc +0 -0
- src/app.py +32 -0
- src/utils/__init__.py +0 -0
- src/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- src/utils/__pycache__/authentication.cpython-310.pyc +0 -0
- src/utils/__pycache__/payload_model.cpython-310.pyc +0 -0
- src/utils/__pycache__/qwen_inference.cpython-310.pyc +0 -0
- src/utils/authentication.py +20 -0
- src/utils/payload_model.py +9 -0
- src/utils/qwen_inference.py +134 -0
.gitignore
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ignores Python cache directories:
|
| 2 |
+
# __pycache__/ - ignores cache directory in root folder
|
| 3 |
+
# */__pycache__/ - ignores cache directories one level deep
|
| 4 |
+
# **/__pycache__/ - ignores cache directories at any depth
|
| 5 |
+
__pycache__/
|
| 6 |
+
*/__pycache__/
|
| 7 |
+
**/__pycache__/
|
| 8 |
+
# Python bytecode files:
|
| 9 |
+
# *.pyc - compiled Python files
|
| 10 |
+
# *.pyo - optimized Python files
|
| 11 |
+
# *.pyd - Python DLL files
|
| 12 |
+
*.py[cod]
|
| 13 |
+
|
| 14 |
+
# Python implementation-specific bytecode
|
| 15 |
+
*$py.class
|
| 16 |
+
|
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.9
|
| 5 |
+
|
| 6 |
+
RUN useradd -m -u 1000 user
|
| 7 |
+
USER user
|
| 8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 9 |
+
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
+
|
| 15 |
+
COPY --chown=user . /app
|
| 16 |
+
CMD ["uvicorn", "src.app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: mit
|
| 9 |
-
short_description:
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Qwen2.5 VL 3B Instruct Backend API
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: mit
|
| 9 |
+
short_description: A Qwen2.5-VL-3B-Instruct backend for testing
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
transformers
|
| 4 |
+
accelerate
|
| 5 |
+
qwen-vl-utils[decord]==0.0.8
|
| 6 |
+
python-dotenv
|
| 7 |
+
PyJWT
|
| 8 |
+
pydantic
|
| 9 |
+
torch
|
| 10 |
+
torchvision
|
| 11 |
+
hf_xet
|
src/__pycache__/app.cpython-310.pyc
ADDED
|
Binary file (1.19 kB). View file
|
|
|
src/app.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pyexpat import model
|
| 2 |
+
from typing import Annotated
|
| 3 |
+
from fastapi import FastAPI, Depends
|
| 4 |
+
from .utils.authentication import verify_token
|
| 5 |
+
from .utils.payload_model import SingleInferencePayload, VideoInferencePayload
|
| 6 |
+
from .utils.qwen_inference import Qwen2_5
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
|
| 11 |
+
load_dotenv()
|
| 12 |
+
|
| 13 |
+
model_path = os.getenv("MODEL_PATH")
|
| 14 |
+
|
| 15 |
+
model_object = Qwen2_5(model_path)
|
| 16 |
+
|
| 17 |
+
app = FastAPI()
|
| 18 |
+
|
| 19 |
+
@app.get("/")
|
| 20 |
+
def greet_json():
|
| 21 |
+
return {
|
| 22 |
+
"message": "Welcome! The backend API for Qwen2.5-VL-3B-Instruct model is running.",
|
| 23 |
+
"status": "active"
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
@app.post("/single_inference")
|
| 27 |
+
def single_inference(payload: SingleInferencePayload, _token: Annotated[dict, Depends(verify_token)]):
|
| 28 |
+
return model_object.get_single_inference(payload)
|
| 29 |
+
|
| 30 |
+
@app.post("/video_inference")
|
| 31 |
+
def video_inference(payload: VideoInferencePayload, _token: Annotated[dict, Depends(verify_token)]):
|
| 32 |
+
return model_object.get_video_inference(payload)
|
src/utils/__init__.py
ADDED
|
File without changes
|
src/utils/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (236 Bytes). View file
|
|
|
src/utils/__pycache__/authentication.cpython-310.pyc
ADDED
|
Binary file (1.02 kB). View file
|
|
|
src/utils/__pycache__/payload_model.cpython-310.pyc
ADDED
|
Binary file (728 Bytes). View file
|
|
|
src/utils/__pycache__/qwen_inference.cpython-310.pyc
ADDED
|
Binary file (712 Bytes). View file
|
|
|
src/utils/authentication.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import HTTPException, Header
|
| 2 |
+
import jwt
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
load_dotenv()
|
| 7 |
+
|
| 8 |
+
def get_secret_key():
|
| 9 |
+
return os.getenv("SECRET_KEY")
|
| 10 |
+
|
| 11 |
+
async def verify_token(authorization: str = Header(...)):
|
| 12 |
+
try:
|
| 13 |
+
token_type, token = authorization.split()
|
| 14 |
+
if token_type.lower() != "bearer":
|
| 15 |
+
raise HTTPException(status_code=401, detail="Invalid token type")
|
| 16 |
+
return jwt.decode(token, get_secret_key(), algorithms=["HS256"])
|
| 17 |
+
except jwt.ExpiredSignatureError:
|
| 18 |
+
raise HTTPException(status_code=401, detail="Token has expired")
|
| 19 |
+
except (jwt.InvalidTokenError, IndexError):
|
| 20 |
+
raise HTTPException(status_code=401, detail="Invalid token")
|
src/utils/payload_model.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pydantic import BaseModel
|
| 2 |
+
|
| 3 |
+
class SingleInferencePayload(BaseModel):
|
| 4 |
+
image_path: str
|
| 5 |
+
question: str
|
| 6 |
+
|
| 7 |
+
class VideoInferencePayload(BaseModel):
|
| 8 |
+
video_path: str
|
| 9 |
+
question: list[str]
|
src/utils/qwen_inference.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .payload_model import SingleInferencePayload, VideoInferencePayload
|
| 2 |
+
from transformers import AutoModelForVision2Seq, AutoTokenizer, AutoProcessor
|
| 3 |
+
from qwen_vl_utils import process_vision_info
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from typing import Optional
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Qwen2_5(BaseModel):
|
| 9 |
+
model: Optional[AutoModelForVision2Seq] = None
|
| 10 |
+
tokenizer: Optional[AutoTokenizer] = None
|
| 11 |
+
processor: Optional[AutoProcessor] = None
|
| 12 |
+
|
| 13 |
+
model_config = {
|
| 14 |
+
"arbitrary_types_allowed": True,
|
| 15 |
+
"from_attributes": True
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
def __init__(self, model_path: str):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.model = AutoModelForVision2Seq.from_pretrained(
|
| 21 |
+
model_path, torch_dtype="auto", device_map="auto"
|
| 22 |
+
)
|
| 23 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 24 |
+
self.processor = AutoProcessor.from_pretrained(model_path)
|
| 25 |
+
|
| 26 |
+
def prepare_single_inference(self, image: str, question: str):
|
| 27 |
+
image = f"data:image;base64,{image}"
|
| 28 |
+
messages = [
|
| 29 |
+
{
|
| 30 |
+
"role": "user",
|
| 31 |
+
"content": [
|
| 32 |
+
{
|
| 33 |
+
"type": "text",
|
| 34 |
+
"image": image,
|
| 35 |
+
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"type": "text",
|
| 39 |
+
"text": question
|
| 40 |
+
},
|
| 41 |
+
],
|
| 42 |
+
}
|
| 43 |
+
]
|
| 44 |
+
text = self.processor.apply_chat_template(
|
| 45 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 46 |
+
)
|
| 47 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 48 |
+
inputs = self.processor(
|
| 49 |
+
text=[text],
|
| 50 |
+
images=image_inputs,
|
| 51 |
+
videos=video_inputs,
|
| 52 |
+
padding=True,
|
| 53 |
+
return_tensors="pt",
|
| 54 |
+
)
|
| 55 |
+
inputs = inputs.to("cuda")
|
| 56 |
+
|
| 57 |
+
return inputs
|
| 58 |
+
|
| 59 |
+
def prepare_video_inference(self, video: list[str], question: str):
|
| 60 |
+
base64_videos = []
|
| 61 |
+
for frame in video:
|
| 62 |
+
base64_videos.append(f"data:image;base64,{frame}")
|
| 63 |
+
messages = [
|
| 64 |
+
{
|
| 65 |
+
"role": "user",
|
| 66 |
+
"content": [
|
| 67 |
+
{
|
| 68 |
+
"type": "video",
|
| 69 |
+
"video": base64_videos,
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"type": "text",
|
| 73 |
+
"text": question
|
| 74 |
+
},
|
| 75 |
+
],
|
| 76 |
+
}
|
| 77 |
+
]
|
| 78 |
+
text = self.processor.apply_chat_template(
|
| 79 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 80 |
+
)
|
| 81 |
+
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
|
| 82 |
+
inputs = self.processor(
|
| 83 |
+
text=[text],
|
| 84 |
+
images=image_inputs,
|
| 85 |
+
videos=video_inputs,
|
| 86 |
+
fps=1.0,
|
| 87 |
+
padding=True,
|
| 88 |
+
return_tensors="pt",
|
| 89 |
+
**video_kwargs,
|
| 90 |
+
)
|
| 91 |
+
inputs = inputs.to("cuda")
|
| 92 |
+
return inputs
|
| 93 |
+
|
| 94 |
+
def get_single_inference(self, payload: SingleInferencePayload):
|
| 95 |
+
try:
|
| 96 |
+
processed_inputs = self.prepare_single_inference(payload.image_path, payload.question)
|
| 97 |
+
generated_ids = self.model.generate(**processed_inputs, max_new_tokens=128)
|
| 98 |
+
generated_ids_trimmed = [
|
| 99 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(processed_inputs.input_ids, generated_ids)
|
| 100 |
+
]
|
| 101 |
+
output_text = self.processor.batch_decode(
|
| 102 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 103 |
+
)
|
| 104 |
+
print(f"Model generated text: {output_text}")
|
| 105 |
+
return {
|
| 106 |
+
"message": output_text,
|
| 107 |
+
"status": 200
|
| 108 |
+
}
|
| 109 |
+
except Exception as e:
|
| 110 |
+
return {
|
| 111 |
+
"message": str(e),
|
| 112 |
+
"status": 500
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
def get_video_inference(self, payload: VideoInferencePayload):
|
| 116 |
+
try:
|
| 117 |
+
processed_inputs = self.prepare_video_inference(payload.video_path, payload.question)
|
| 118 |
+
generated_ids = self.model.generate(**processed_inputs, max_new_tokens=128)
|
| 119 |
+
generated_ids_trimmed = [
|
| 120 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(processed_inputs.input_ids, generated_ids)
|
| 121 |
+
]
|
| 122 |
+
output_text = self.processor.batch_decode(
|
| 123 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 124 |
+
)
|
| 125 |
+
print(f"Model generated text: {output_text}")
|
| 126 |
+
return {
|
| 127 |
+
"message": output_text,
|
| 128 |
+
"status": 200
|
| 129 |
+
}
|
| 130 |
+
except Exception as e:
|
| 131 |
+
return {
|
| 132 |
+
"message": str(e),
|
| 133 |
+
"status": 500
|
| 134 |
+
}
|