Update src/models/dit_dforce.py
Browse files- src/models/dit_dforce.py +108 -76
src/models/dit_dforce.py
CHANGED
|
@@ -2,31 +2,45 @@ import torch as t
|
|
| 2 |
from torch import nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
|
| 5 |
-
from ..nn.attn import
|
| 6 |
from ..nn.patch import Patch, UnPatch
|
| 7 |
from ..nn.geglu import GEGLU
|
| 8 |
-
from ..nn.pe import
|
| 9 |
from jaxtyping import Float, Bool, Int
|
| 10 |
from torch import Tensor
|
| 11 |
-
from typing import Optional
|
| 12 |
|
|
|
|
| 13 |
import math
|
| 14 |
|
| 15 |
def modulate(x, shift, scale):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
return x * (1 + scale) + shift
|
| 17 |
|
| 18 |
class CausalBlock(nn.Module):
|
| 19 |
-
def __init__(self, layer_idx, d_model, expansion, n_heads, rope=None):
|
| 20 |
super().__init__()
|
| 21 |
self.layer_idx = layer_idx
|
| 22 |
self.d_model = d_model
|
| 23 |
self.expansion = expansion
|
| 24 |
self.n_heads = n_heads
|
| 25 |
self.norm1 = nn.LayerNorm(d_model)
|
| 26 |
-
|
| 27 |
-
self.selfattn = AttentionEinOps(d_model, n_heads, rope=rope)
|
| 28 |
-
else:
|
| 29 |
-
self.selfattn = AttentionEinOps(d_model, n_heads, rope=rope) # there is a problem with flexattn i think
|
| 30 |
self.norm2 = nn.LayerNorm(d_model)
|
| 31 |
self.geglu = GEGLU(d_model, expansion*d_model, d_model)
|
| 32 |
|
|
@@ -35,28 +49,20 @@ class CausalBlock(nn.Module):
|
|
| 35 |
nn.Linear(d_model, 6 * d_model, bias=True),
|
| 36 |
)
|
| 37 |
|
| 38 |
-
def forward(self, z, cond, mask_self,
|
| 39 |
# batch durseq1 d
|
| 40 |
# batch durseq2 d
|
| 41 |
mu1, sigma1, c1, mu2, sigma2, c2 = self.modulation(cond).chunk(6, dim=-1)
|
| 42 |
residual = z
|
| 43 |
z = modulate(self.norm1(z), mu1, sigma1)
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
offset = cache.global_location # this enables to include rope and ln into the cache
|
| 47 |
-
offset = 0 # this is for reapplying rope again and again to stay more similar to training
|
| 48 |
-
z, k_new, v_new = self.selfattn(z, z, mask=mask_self, k_cache=k, v_cache=v, offset=offset)
|
| 49 |
-
cache.extend(self.layer_idx, k_new, v_new)
|
| 50 |
-
else:
|
| 51 |
-
z, _, _ = self.selfattn(z, z, mask=mask_self)
|
| 52 |
-
|
| 53 |
-
z = residual + c1*z
|
| 54 |
|
| 55 |
residual = z
|
| 56 |
z = modulate(self.norm2(z), mu2, sigma2)
|
| 57 |
z = self.geglu(z)
|
| 58 |
-
z = residual + c2
|
| 59 |
-
return z
|
| 60 |
|
| 61 |
|
| 62 |
class CausalDit(nn.Module):
|
|
@@ -64,10 +70,10 @@ class CausalDit(nn.Module):
|
|
| 64 |
patch_size=2, n_heads=8, expansion=4, n_blocks=6,
|
| 65 |
n_registers=1, n_actions=4, bidirectional=False,
|
| 66 |
debug=False,
|
| 67 |
-
legacy=False,
|
| 68 |
-
frame_rope=False,
|
| 69 |
rope_C=10000,
|
| 70 |
-
rope_tmax=None
|
|
|
|
|
|
|
| 71 |
super().__init__()
|
| 72 |
self.height = height
|
| 73 |
self.width = width
|
|
@@ -81,24 +87,39 @@ class CausalDit(nn.Module):
|
|
| 81 |
self.T = T
|
| 82 |
self.patch_size = patch_size
|
| 83 |
self.debug = debug
|
| 84 |
-
self.legacy = legacy
|
| 85 |
self.bidirectional = bidirectional
|
| 86 |
-
self.frame_rope = frame_rope
|
| 87 |
self.toks_per_frame = (height//patch_size)*(width//patch_size) + n_registers
|
| 88 |
self.rope_C = rope_C
|
| 89 |
-
if
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
self.rope_seq = FrameRoPE(d_model//n_heads, self.n_window, self.toks_per_frame, C=rope_C)
|
| 93 |
-
self.grid_pe = nn.Parameter(t.randn(self.toks_per_frame - n_registers, d_model) * 1/d_model**0.5)
|
| 94 |
-
else:
|
| 95 |
-
if rope_tmax is None:
|
| 96 |
-
rope_tmax = self.n_window*self.toks_per_frame
|
| 97 |
self.rope_seq = RoPE(d_model//n_heads, rope_tmax, C=rope_C)
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
self.rope_tmax = rope_tmax
|
| 100 |
|
| 101 |
-
self.blocks = nn.ModuleList([CausalBlock(lidx, d_model, expansion, n_heads, rope=self.rope_seq) for lidx in range(n_blocks)])
|
| 102 |
self.patch = Patch(in_channels=in_channels, out_channels=d_model, patch_size=patch_size)
|
| 103 |
self.norm = nn.LayerNorm(d_model)
|
| 104 |
self.unpatch = UnPatch(height, width, in_channels=d_model, out_channels=in_channels, patch_size=patch_size)
|
|
@@ -112,25 +133,18 @@ class CausalDit(nn.Module):
|
|
| 112 |
)
|
| 113 |
self.cache = None
|
| 114 |
|
| 115 |
-
def
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
self.rope_seq.to(self.device)
|
| 121 |
-
self.rope_seq.to(self.dtype)
|
| 122 |
-
for idx, block in enumerate(self.blocks):
|
| 123 |
-
print("updating rope for block", idx)
|
| 124 |
-
print(self.blocks[idx].selfattn.rope.sins.shape, self.blocks[idx].selfattn.rope.coss.shape)
|
| 125 |
-
self.blocks[idx].selfattn.rope = self.rope_seq
|
| 126 |
-
print(self.blocks[idx].selfattn.rope.sins.shape, self.blocks[idx].selfattn.rope.coss.shape)
|
| 127 |
-
def deactivate_caching(self):
|
| 128 |
-
self.cache = None
|
| 129 |
|
| 130 |
def forward(self,
|
| 131 |
z: Float[Tensor, "batch dur channels height width"],
|
| 132 |
actions: Float[Tensor, "batch dur"],
|
| 133 |
-
ts: Int[Tensor, "batch dur"]
|
|
|
|
|
|
|
| 134 |
|
| 135 |
if ts.shape[1] == 1:
|
| 136 |
ts = ts.repeat(1, z.shape[1])
|
|
@@ -138,11 +152,11 @@ class CausalDit(nn.Module):
|
|
| 138 |
a = self.action_emb(actions) # batch dur d
|
| 139 |
ts_scaled = (ts * self.T).clamp(0, self.T - 1).long()
|
| 140 |
cond = self.time_emb_mixer(self.time_emb(ts_scaled)) + a
|
| 141 |
-
|
| 142 |
-
cond = cond.repeat_interleave(self.toks_per_frame, dim=1)
|
| 143 |
z = self.patch(z) # batch dur seq d
|
| 144 |
if self.grid_pe is not None:
|
| 145 |
z = z + self.grid_pe[None, None]
|
|
|
|
| 146 |
# self.registers is in 1x
|
| 147 |
zr = t.cat((z, self.registers[None, None].repeat([z.shape[0], z.shape[1], 1, 1])), dim=2)# z plus registers
|
| 148 |
if self.bidirectional:
|
|
@@ -152,18 +166,29 @@ class CausalDit(nn.Module):
|
|
| 152 |
batch, durzr, seqzr, d = zr.shape
|
| 153 |
zr = zr.reshape(batch, -1, d) # batch durseq d
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
mu, sigma = self.modulation(cond).chunk(2, dim=-1)
|
| 158 |
zr = modulate(self.norm(zr), mu, sigma)
|
| 159 |
zr = zr.reshape(batch, durzr, seqzr, d)
|
| 160 |
out = self.unpatch(zr[:, :, :-self.n_registers])
|
| 161 |
-
return out
|
| 162 |
|
| 163 |
@property
|
| 164 |
def causal_mask(self):
|
| 165 |
size = self.n_window
|
| 166 |
-
m_self = t.tril(t.ones((size, size), dtype=t.int8, device=self.device))
|
| 167 |
m_self = t.kron(m_self, t.ones((self.toks_per_frame, self.toks_per_frame), dtype=t.int8, device=self.device))
|
| 168 |
m_self = m_self.to(bool)
|
| 169 |
return ~ m_self # we want to mask out the ones
|
|
@@ -177,8 +202,30 @@ class CausalDit(nn.Module):
|
|
| 177 |
return self.parameters().__next__().dtype
|
| 178 |
|
| 179 |
|
| 180 |
-
def get_model(height, width,
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
if __name__ == "__main__":
|
| 184 |
print("running w/o cache")
|
|
@@ -186,21 +233,6 @@ if __name__ == "__main__":
|
|
| 186 |
z = t.rand((2, 6, 3, 20, 20))
|
| 187 |
actions = t.randint(4, (2, 6))
|
| 188 |
ts = t.rand((2, 6))
|
| 189 |
-
out = dit(z, actions, ts)
|
| 190 |
print(z.shape)
|
| 191 |
-
print(out.shape)
|
| 192 |
-
|
| 193 |
-
print("running w cache")
|
| 194 |
-
dit = CausalDit(20, 20, 10, 64, 5, n_blocks=2)
|
| 195 |
-
dit.activate_caching(2)
|
| 196 |
-
print(dit.cache.toks_per_frame)
|
| 197 |
-
print(dit.cache.size)
|
| 198 |
-
for i in range(30):
|
| 199 |
-
print(dit.cache.local_loc)
|
| 200 |
-
print(dit.cache.global_loc)
|
| 201 |
-
z = t.rand((2, 1, 3, 20, 20))
|
| 202 |
-
actions = t.randint(4, (2, 1))
|
| 203 |
-
ts = t.rand((2, 1))
|
| 204 |
-
out = dit(z, actions, ts)
|
| 205 |
-
print(i, z.shape)
|
| 206 |
-
print(i, out.shape)
|
|
|
|
| 2 |
from torch import nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
|
| 5 |
+
from ..nn.attn import AttentionEinOps, KVCache, KVCacheNaive
|
| 6 |
from ..nn.patch import Patch, UnPatch
|
| 7 |
from ..nn.geglu import GEGLU
|
| 8 |
+
from ..nn.pe import NumericEncoding, RoPE, LearnRoPE, VidRoPE
|
| 9 |
from jaxtyping import Float, Bool, Int
|
| 10 |
from torch import Tensor
|
| 11 |
+
from typing import Optional, Literal
|
| 12 |
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
import math
|
| 15 |
|
| 16 |
def modulate(x, shift, scale):
|
| 17 |
+
b, s, d = x.shape
|
| 18 |
+
toks_per_frame = s // shift.shape[1]
|
| 19 |
+
x = x.reshape(b, -1, toks_per_frame, d)
|
| 20 |
+
x = x * (1 + scale[:, :, None, :]) + shift[:, :, None, :]
|
| 21 |
+
x = x.reshape(b, s, d)
|
| 22 |
+
return x
|
| 23 |
+
|
| 24 |
+
def gate(x, gate):
|
| 25 |
+
b, s, d = x.shape
|
| 26 |
+
toks_per_frame = s // gate.shape[1]
|
| 27 |
+
x = x.reshape(b, -1, toks_per_frame, d)
|
| 28 |
+
x = x * gate[:, :, None, :]
|
| 29 |
+
x = x.reshape(b, s, d)
|
| 30 |
+
return x
|
| 31 |
+
|
| 32 |
+
def modulate_deprecated(x, shift, scale):
|
| 33 |
return x * (1 + scale) + shift
|
| 34 |
|
| 35 |
class CausalBlock(nn.Module):
|
| 36 |
+
def __init__(self, layer_idx, d_model, expansion, n_heads, rope=None, ln_first = False):
|
| 37 |
super().__init__()
|
| 38 |
self.layer_idx = layer_idx
|
| 39 |
self.d_model = d_model
|
| 40 |
self.expansion = expansion
|
| 41 |
self.n_heads = n_heads
|
| 42 |
self.norm1 = nn.LayerNorm(d_model)
|
| 43 |
+
self.selfattn = AttentionEinOps(d_model, n_heads, rope=rope, ln_first=ln_first)
|
|
|
|
|
|
|
|
|
|
| 44 |
self.norm2 = nn.LayerNorm(d_model)
|
| 45 |
self.geglu = GEGLU(d_model, expansion*d_model, d_model)
|
| 46 |
|
|
|
|
| 49 |
nn.Linear(d_model, 6 * d_model, bias=True),
|
| 50 |
)
|
| 51 |
|
| 52 |
+
def forward(self, z, cond, mask_self, cached_k=None, cached_v=None):
|
| 53 |
# batch durseq1 d
|
| 54 |
# batch durseq2 d
|
| 55 |
mu1, sigma1, c1, mu2, sigma2, c2 = self.modulation(cond).chunk(6, dim=-1)
|
| 56 |
residual = z
|
| 57 |
z = modulate(self.norm1(z), mu1, sigma1)
|
| 58 |
+
z, k_new, v_new = self.selfattn(z, z, mask=mask_self, k_cache=cached_k, v_cache=cached_v)
|
| 59 |
+
z = residual + gate(z, c1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
residual = z
|
| 62 |
z = modulate(self.norm2(z), mu2, sigma2)
|
| 63 |
z = self.geglu(z)
|
| 64 |
+
z = residual + gate(z, c2)
|
| 65 |
+
return z, k_new, v_new
|
| 66 |
|
| 67 |
|
| 68 |
class CausalDit(nn.Module):
|
|
|
|
| 70 |
patch_size=2, n_heads=8, expansion=4, n_blocks=6,
|
| 71 |
n_registers=1, n_actions=4, bidirectional=False,
|
| 72 |
debug=False,
|
|
|
|
|
|
|
| 73 |
rope_C=10000,
|
| 74 |
+
rope_tmax=None,
|
| 75 |
+
rope_type: Literal["rope", "learn", "vid"] = "rope",
|
| 76 |
+
ln_first: bool = False):
|
| 77 |
super().__init__()
|
| 78 |
self.height = height
|
| 79 |
self.width = width
|
|
|
|
| 87 |
self.T = T
|
| 88 |
self.patch_size = patch_size
|
| 89 |
self.debug = debug
|
|
|
|
| 90 |
self.bidirectional = bidirectional
|
|
|
|
| 91 |
self.toks_per_frame = (height//patch_size)*(width//patch_size) + n_registers
|
| 92 |
self.rope_C = rope_C
|
| 93 |
+
if rope_tmax is None:
|
| 94 |
+
rope_tmax = self.n_window*self.toks_per_frame
|
| 95 |
+
if rope_type == "rope":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
self.rope_seq = RoPE(d_model//n_heads, rope_tmax, C=rope_C)
|
| 97 |
+
elif rope_type == "learn":
|
| 98 |
+
self.rope_seq = LearnRoPE(d_model//n_heads, rope_tmax, C=rope_C)
|
| 99 |
+
elif rope_type == "vid":
|
| 100 |
+
d_head = d_model//n_heads
|
| 101 |
+
d_x = d_y = d_t = d_head // 3
|
| 102 |
+
C_x = C_y = C_t = rope_C // 3
|
| 103 |
+
ctx_x = width // patch_size
|
| 104 |
+
ctx_y = height // patch_size
|
| 105 |
+
ctx_t = self.n_window
|
| 106 |
+
self.rope_seq = VidRoPE(d_head,
|
| 107 |
+
d_x,
|
| 108 |
+
d_y,
|
| 109 |
+
d_t,
|
| 110 |
+
ctx_x,
|
| 111 |
+
ctx_y,
|
| 112 |
+
ctx_t,
|
| 113 |
+
C_x,
|
| 114 |
+
C_y,
|
| 115 |
+
C_t,
|
| 116 |
+
self.toks_per_frame,
|
| 117 |
+
n_registers)
|
| 118 |
+
|
| 119 |
+
self.grid_pe = None
|
| 120 |
self.rope_tmax = rope_tmax
|
| 121 |
|
| 122 |
+
self.blocks = nn.ModuleList([CausalBlock(lidx, d_model, expansion, n_heads, rope=self.rope_seq, ln_first=ln_first) for lidx in range(n_blocks)])
|
| 123 |
self.patch = Patch(in_channels=in_channels, out_channels=d_model, patch_size=patch_size)
|
| 124 |
self.norm = nn.LayerNorm(d_model)
|
| 125 |
self.unpatch = UnPatch(height, width, in_channels=d_model, out_channels=in_channels, patch_size=patch_size)
|
|
|
|
| 133 |
)
|
| 134 |
self.cache = None
|
| 135 |
|
| 136 |
+
def create_cache(self, batch_size):
|
| 137 |
+
return KVCache(batch_size, self.n_blocks, self.n_heads, self.d_head, self.toks_per_frame, self.n_window, dtype=self.dtype, device=self.device)
|
| 138 |
+
|
| 139 |
+
def create_cache2(self, batch_size):
|
| 140 |
+
return KVCacheNaive(batch_size, self.n_blocks, self.n_heads, self.d_head, self.toks_per_frame, self.n_window, dtype=self.dtype, device=self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
def forward(self,
|
| 143 |
z: Float[Tensor, "batch dur channels height width"],
|
| 144 |
actions: Float[Tensor, "batch dur"],
|
| 145 |
+
ts: Int[Tensor, "batch dur"],
|
| 146 |
+
cached_k: Optional[Float[Tensor, "layer batch dur seq d"]] = None,
|
| 147 |
+
cached_v: Optional[Float[Tensor, "layer batch dur seq d"]] = None):
|
| 148 |
|
| 149 |
if ts.shape[1] == 1:
|
| 150 |
ts = ts.repeat(1, z.shape[1])
|
|
|
|
| 152 |
a = self.action_emb(actions) # batch dur d
|
| 153 |
ts_scaled = (ts * self.T).clamp(0, self.T - 1).long()
|
| 154 |
cond = self.time_emb_mixer(self.time_emb(ts_scaled)) + a
|
| 155 |
+
|
|
|
|
| 156 |
z = self.patch(z) # batch dur seq d
|
| 157 |
if self.grid_pe is not None:
|
| 158 |
z = z + self.grid_pe[None, None]
|
| 159 |
+
|
| 160 |
# self.registers is in 1x
|
| 161 |
zr = t.cat((z, self.registers[None, None].repeat([z.shape[0], z.shape[1], 1, 1])), dim=2)# z plus registers
|
| 162 |
if self.bidirectional:
|
|
|
|
| 166 |
batch, durzr, seqzr, d = zr.shape
|
| 167 |
zr = zr.reshape(batch, -1, d) # batch durseq d
|
| 168 |
|
| 169 |
+
k_update = []
|
| 170 |
+
v_update = []
|
| 171 |
+
for bidx, block in enumerate(self.blocks):
|
| 172 |
+
ks = cached_k[bidx] if cached_k is not None else None
|
| 173 |
+
vs = cached_v[bidx] if cached_v is not None else None
|
| 174 |
+
zr, k_new, v_new = block(zr, cond, mask_self, cached_k=ks, cached_v=vs)
|
| 175 |
+
if k_new is not None:
|
| 176 |
+
k_update.append(k_new.unsqueeze(0))
|
| 177 |
+
v_update.append(v_new.unsqueeze(0))
|
| 178 |
+
if len(k_update) > 0:
|
| 179 |
+
k_update = t.cat(k_update, dim=0)
|
| 180 |
+
v_update = t.cat(v_update, dim=0)
|
| 181 |
+
|
| 182 |
mu, sigma = self.modulation(cond).chunk(2, dim=-1)
|
| 183 |
zr = modulate(self.norm(zr), mu, sigma)
|
| 184 |
zr = zr.reshape(batch, durzr, seqzr, d)
|
| 185 |
out = self.unpatch(zr[:, :, :-self.n_registers])
|
| 186 |
+
return out, k_update, v_update
|
| 187 |
|
| 188 |
@property
|
| 189 |
def causal_mask(self):
|
| 190 |
size = self.n_window
|
| 191 |
+
m_self = t.tril(t.ones((size, size), dtype=t.int8, device=self.device)) # - t.tril(t.ones((size, size), dtype=t.int8, device=self.device), diagonal=-self.n_window) # this would be useful if we go bigger than windowxwindow
|
| 192 |
m_self = t.kron(m_self, t.ones((self.toks_per_frame, self.toks_per_frame), dtype=t.int8, device=self.device))
|
| 193 |
m_self = m_self.to(bool)
|
| 194 |
return ~ m_self # we want to mask out the ones
|
|
|
|
| 202 |
return self.parameters().__next__().dtype
|
| 203 |
|
| 204 |
|
| 205 |
+
def get_model(height, width,
|
| 206 |
+
n_window=5,
|
| 207 |
+
d_model=64,
|
| 208 |
+
T=100,
|
| 209 |
+
n_blocks=2,
|
| 210 |
+
patch_size=2,
|
| 211 |
+
n_heads=8,
|
| 212 |
+
bidirectional=False,
|
| 213 |
+
in_channels=3,
|
| 214 |
+
C=10000,
|
| 215 |
+
rope_type: Literal["rope", "learn", "vid"] = "rope",
|
| 216 |
+
ln_first=False):
|
| 217 |
+
return CausalDit(height, width,
|
| 218 |
+
n_window,
|
| 219 |
+
d_model,
|
| 220 |
+
T,
|
| 221 |
+
in_channels=in_channels,
|
| 222 |
+
n_blocks=n_blocks,
|
| 223 |
+
patch_size=patch_size,
|
| 224 |
+
n_heads=n_heads,
|
| 225 |
+
bidirectional=bidirectional,
|
| 226 |
+
rope_C=C,
|
| 227 |
+
rope_type=rope_type,
|
| 228 |
+
ln_first=ln_first)
|
| 229 |
|
| 230 |
if __name__ == "__main__":
|
| 231 |
print("running w/o cache")
|
|
|
|
| 233 |
z = t.rand((2, 6, 3, 20, 20))
|
| 234 |
actions = t.randint(4, (2, 6))
|
| 235 |
ts = t.rand((2, 6))
|
| 236 |
+
out, _, _ = dit(z, actions, ts)
|
| 237 |
print(z.shape)
|
| 238 |
+
print(out.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|