chrisxx commited on
Commit
19ab982
·
1 Parent(s): 5a2ea85

Add back README.md with updated FPS info

Browse files
Files changed (1) hide show
  1. README.md +42 -0
README.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Neural Pong
3
+ emoji: 🎮
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: docker
7
+ pinned: false
8
+ license: mit
9
+ ---
10
+
11
+ # Neural Pong
12
+
13
+ A real-time Pong game where frames are generated by a diffusion model trained with rectified flow matching. Control the blue paddle using arrow keys or WASD to play!
14
+
15
+ ## Features
16
+
17
+ - **Real-time frame generation**: Uses a frame-autoregressive transformer with diffusion sampling
18
+ - **Interactive gameplay**: Control the paddle with keyboard inputs
19
+ - **Configurable parameters**: Adjust FPS and diffusion steps
20
+ - **Low-latency streaming**: Achieves ~12 FPS with 4 diffusion steps
21
+
22
+ ## How to Play
23
+
24
+ 1. Wait for the model to load (you'll see a loading spinner)
25
+ 2. Click "Start Stream" to begin generating frames
26
+ 3. Use **Arrow Keys** or **WASD** to control the blue paddle:
27
+ - **Up/W**: Move paddle up
28
+ - **Down/S**: Move paddle down
29
+ 4. Adjust the FPS and diffusion steps using the controls
30
+ 5. Click "Stop Stream" when done
31
+
32
+ ## Technical Details
33
+
34
+ This demo uses a small transformer model trained with rectified flow matching to simulate Pong game frames conditioned on user inputs. The model generates 24×24 pixel frames in real-time using diffusion sampling with configurable steps.
35
+
36
+ ## Model Architecture
37
+
38
+ - Frame-autoregressive transformer
39
+ - Rectified flow matching training
40
+ - Caching for efficient inference
41
+ - GPU-accelerated generation
42
+