File size: 16,925 Bytes
8746765 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
#!/usr/bin/env python3
"""
Pong backend (GPU, eager) for Hugging Face Spaces.
Broadcasts readiness via Socket.IO so the frontend can auto-hide a loading overlay once the model is ready.
"""
# Eventlet must be imported first and monkey-patched before other imports
import eventlet
eventlet.monkey_patch()
import sys
import os
import time
import threading
import base64
import traceback
from contextlib import contextmanager
from io import BytesIO
import torch as t
import torch._dynamo as _dynamo
import numpy as np
from PIL import Image
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
from flask_socketio import SocketIO, emit
# --------------------------
# Project imports
# --------------------------
project_root = os.path.dirname(os.path.abspath(__file__))
if project_root not in sys.path:
sys.path.insert(0, project_root)
from src.utils.checkpoint import load_model_from_config
from src.inference.sampling import sample
from src.datasets.pong1m import fixed2frame
from src.config import Config
# --------------------------
# App setup
# --------------------------
app = Flask(__name__, static_folder='static')
CORS(app)
# Configure SocketIO - use eventlet for proper WebSocket support
socketio = SocketIO(
app,
cors_allowed_origins="*",
async_mode='eventlet',
logger=False,
engineio_logger=False,
ping_timeout=60,
ping_interval=25,
max_http_buffer_size=1e8 # Allow larger messages
)
# --------------------------
# Globals
# --------------------------
model = None
pred2frame = None
device = None
server_ready = False # <--- readiness flag
stream_lock = threading.Lock()
stream_thread = None
stream_running = False
latest_action = 1 # 0=init, 1=nothing, 2=up, 3=down
target_fps = 30
frame_index = 0
noise_buf = None # (1,1,3,24,24) on GPU
action_buf = None # (1,1) long on GPU
cpu_png_buffer = None # BytesIO; reused
step_once = None
# --------------------------
# Perf (new API)
# --------------------------
t.backends.cudnn.benchmark = True
t.backends.cudnn.conv.fp32_precision = "tf32"
t.backends.cuda.matmul.fp32_precision = "high"
# --------------------------
# Debug helpers
# --------------------------
def _shape(x):
try:
return f"{tuple(x.shape)} | {x.dtype} | {x.device}"
except Exception:
return "<?>"
def _shape_attr(obj, name):
try:
ten = getattr(obj, name, None)
return None if ten is None else _shape(ten)
except Exception:
return None
def _fail(msg, extra=None):
lines = [f"[GEN ERROR] {msg}"]
if extra:
for k, v in extra.items():
lines.append(f" - {k}: {v}")
raise RuntimeError("\n".join(lines))
@contextmanager
def log_step_debug(action_tensor=None, noise_tensor=None):
try:
yield
except Exception as e:
tb = traceback.format_exc(limit=6)
_fail("Step failed",
extra={
"action": _shape(action_tensor),
"noise": _shape(noise_tensor),
"model.device": str(device),
"cache.keys": _shape_attr(getattr(model, "cache", None), "keys"),
"cache.values": _shape_attr(getattr(model, "cache", None), "values"),
"frame_index": str(frame_index),
"exception": f"{type(e).__name__}: {e}",
"trace": tb.strip()
})
# --------------------------
# Utilities
# --------------------------
def _ensure_cuda():
if not t.cuda.is_available():
raise RuntimeError("CUDA GPU required; torch.cuda.is_available() is False.")
return t.device("cuda:0")
def _png_base64_from_uint8(frame_uint8) -> str:
global cpu_png_buffer
if cpu_png_buffer is None:
cpu_png_buffer = BytesIO()
else:
cpu_png_buffer.seek(0)
cpu_png_buffer.truncate(0)
Image.fromarray(frame_uint8).save(cpu_png_buffer, format="PNG")
return base64.b64encode(cpu_png_buffer.getvalue()).decode()
def _reset_cache_fresh():
model.cache.reset()
def _broadcast_ready():
"""Tell all clients whether the server is ready."""
socketio.emit('server_status', {'ready': server_ready, 'busy': False})
# --------------------------
# Model init (pure eager) & warmup
# --------------------------
def initialize_model():
global model, pred2frame, device
global noise_buf, action_buf, step_once, server_ready
t_start = time.time()
print("Loading model and preparing GPU runtime...")
device = _ensure_cuda()
config_path = os.path.join(project_root, "configs/inference.yaml")
cfg = Config.from_yaml(config_path)
checkpoint_path = cfg.model.checkpoint
model = load_model_from_config(config_path, checkpoint_path=checkpoint_path, strict=False)
model.to(device) # Move model to GPU before activating cache
model.eval()
model.activate_caching(1, 300) # Cache will now be created on the same device as model
# Use fixed2frame directly instead of get_loader to avoid loading data files
globals()["pred2frame"] = fixed2frame
H = W = 24
noise_buf = t.empty((1, 1, 3, H, W), device=device)
action_buf = t.empty((1, 1), dtype=t.long, device=device)
@_dynamo.disable
def _step(model_, action_scalar_long: int, n_steps: int, cfg: float, clamp: bool):
# Match the notebook logic exactly: create fresh noise each time
noise = t.randn(1, 1, 3, 24, 24, device=device)
action_buf.fill_(int(action_scalar_long))
assert action_buf.shape == (1, 1) and action_buf.dtype == t.long and action_buf.device == device, \
f"action_buf wrong: { _shape(action_buf) }"
assert noise.shape == (1, 1, 3, 24, 24) and noise.device == device, \
f"noise wrong: { _shape(noise) }"
# Debug: Check cache state before sampling
if model_.cache is not None:
cache_loc = model_.cache.local_location
if cache_loc == 0:
# Cache is empty, this should be fine for the first frame
pass
elif cache_loc > 0:
# Check if cache has valid data
k_test, v_test = model_.cache.get(0)
if k_test.shape[1] == 0:
print(f"Warning: Cache returned empty tensors at frame {frame_index}, resetting...")
_reset_cache_fresh()
# Sample with the fresh noise (matching notebook: sample(model, noise, actions[:, aidx:aidx+1], ...))
z = sample(model_, noise, action_buf, num_steps=n_steps, cfg=cfg, negative_actions=None)
# Update cache location after sample (matching notebook: model.cache.update_global_location(1))
model_.cache.update_global_location(1)
if clamp:
z = t.clamp(z, -1, 1)
return z
globals()["step_once"] = _step
print("Mode: eager (no torch.compile)")
# Warmup
_reset_cache_fresh()
with t.inference_mode(), t.autocast(device_type="cuda", dtype=t.bfloat16):
for _ in range(4):
with log_step_debug(action_tensor=action_buf, noise_tensor=noise_buf):
_ = step_once(model, action_scalar_long=1, n_steps=4, cfg=0.0, clamp=True)
server_ready = True
print(f"Model ready on {device}")
_broadcast_ready()
return model, pred2frame
# --------------------------
# Fixed-FPS streaming worker
# --------------------------
class FrameScheduler(threading.Thread):
def __init__(self, fps=30, n_steps=8, cfg=0.0, clamp=True):
super().__init__(daemon=True)
self.frame_period = 1.0 / max(1, int(fps))
self.n_steps = int(n_steps)
self.cfg = float(cfg)
self.clamp = bool(clamp)
self._stop = threading.Event()
# FPS tracking
self.frame_times = []
self.last_frame_time = None
def stop(self):
self._stop.set()
def run(self):
global frame_index, latest_action
next_tick = time.perf_counter()
while not self._stop.is_set():
start = time.perf_counter()
if start - next_tick > self.frame_period * 0.75:
next_tick = start + self.frame_period
continue
try:
with stream_lock:
action = int(latest_action)
with t.inference_mode(), t.autocast(device_type="cuda", dtype=t.bfloat16):
with log_step_debug(action_tensor=action_buf, noise_tensor=noise_buf):
z = step_once(model, action_scalar_long=action,
n_steps=self.n_steps, cfg=self.cfg, clamp=self.clamp)
frames_btchw = pred2frame(z)
# Debug: check what pred2frame returns
if frame_index < 3:
print(f"Frame {frame_index}: z range [{z.min().item():.3f}, {z.max().item():.3f}], "
f"frames_btchw dtype={frames_btchw.dtype}, range [{frames_btchw.min().item()}, {frames_btchw.max().item()}]")
frame_arr = frames_btchw[0, 0].permute(1, 2, 0).contiguous()
if isinstance(frame_arr, t.Tensor):
frame_np = frame_arr.to("cpu", non_blocking=True).numpy()
else:
frame_np = frame_arr.astype(np.uint8, copy=False)
img_b64 = _png_base64_from_uint8(frame_np)
# Calculate achieved FPS
current_time = time.perf_counter()
if self.last_frame_time is not None:
frame_delta = current_time - self.last_frame_time
self.frame_times.append(frame_delta)
# Keep only last 30 frames for moving average
if len(self.frame_times) > 30:
self.frame_times.pop(0)
avg_frame_time = sum(self.frame_times) / len(self.frame_times)
achieved_fps = 1.0 / avg_frame_time if avg_frame_time > 0 else 0
else:
achieved_fps = 0
self.last_frame_time = current_time
socketio.emit('frame', {'frame': img_b64,
'frame_index': frame_index,
'action': action,
'fps': achieved_fps})
frame_index += 1
except Exception as e:
print("Generation error:", repr(e))
socketio.emit('error', {'message': str(e)})
next_tick += self.frame_period
now = time.perf_counter()
sleep_for = next_tick - now
if sleep_for > 0:
time.sleep(sleep_for)
# --------------------------
# Routes
# --------------------------
@app.route('/')
def index():
return send_from_directory('static', 'index.html')
@app.errorhandler(500)
def handle_500(e):
"""Handle WSGI errors gracefully"""
import traceback
print(f"Flask error handler caught: {e}")
traceback.print_exc()
return jsonify({'error': 'Internal server error'}), 500
@app.route('/api/health', methods=['GET'])
def health():
return jsonify({
'status': 'ok',
'ready': server_ready,
'model_loaded': model is not None,
'device': str(device) if device else None,
'stream_running': stream_running,
'target_fps': target_fps
})
@app.route('/api/generate', methods=['POST'])
def generate_frames():
try:
if not server_ready:
return jsonify({'success': False, 'error': 'Server not ready'}), 503
data = request.json or {}
actions_list = data.get('actions', [1])
n_steps = int(data.get('n_steps', 8))
cfg = float(data.get('cfg', 0))
clamp = bool(data.get('clamp', True))
if len(actions_list) == 0 or actions_list[0] != 0:
actions_list = [0] + actions_list
_reset_cache_fresh()
frames_png = []
with t.inference_mode(), t.autocast(device_type="cuda", dtype=t.bfloat16):
for a in actions_list:
with log_step_debug(action_tensor=action_buf, noise_tensor=noise_buf):
z = step_once(model, action_scalar_long=int(a), n_steps=n_steps, cfg=cfg, clamp=clamp)
f_btchw = pred2frame(z)
f_arr = f_btchw[0, 0].permute(1, 2, 0).contiguous()
if isinstance(f_arr, t.Tensor):
if f_arr.dtype != t.uint8:
f_arr = f_arr.to(t.uint8)
f_np = f_arr.to("cpu", non_blocking=True).numpy()
else:
f_np = f_arr.astype(np.uint8, copy=False)
frames_png.append(_png_base64_from_uint8(f_np))
return jsonify({'success': True, 'frames': frames_png, 'num_frames': len(frames_png)})
except Exception as e:
print("Batch generation error:", repr(e))
return jsonify({'success': False, 'error': str(e)}), 500
# --------------------------
# Socket events & helpers
# --------------------------
def start_stream(n_steps=8, cfg=0.0, fps=30, clamp=True):
global stream_thread, stream_running, frame_index, target_fps, latest_action
if not server_ready:
_broadcast_ready()
raise RuntimeError("Server not ready")
with stream_lock:
stop_stream()
target_fps = int(fps)
frame_index = 0
_reset_cache_fresh()
latest_action = 0 # first action = 0 (init)
stream_thread = FrameScheduler(fps=target_fps, n_steps=n_steps, cfg=cfg, clamp=clamp)
stream_running = True
stream_thread.start()
def stop_stream():
global stream_thread, stream_running
if stream_thread is not None:
stream_thread.stop()
stream_thread.join(timeout=1.0)
stream_thread = None
stream_running = False
@socketio.on_error_default
def default_error_handler(e):
print(f"SocketIO error: {e}")
import traceback
traceback.print_exc()
@socketio.on('connect')
def handle_connect():
try:
sid = request.sid
print(f'Client connected: {sid}')
# Immediately tell the new client current readiness
emit('server_status', {
'ready': server_ready,
'busy': False
})
emit('connected', {
'status': 'connected',
'model_loaded': model is not None,
'ready': server_ready
})
except Exception as e:
print(f"Error in handle_connect: {e}")
import traceback
traceback.print_exc()
@socketio.on('disconnect')
def handle_disconnect(*args):
sid = request.sid
print(f'Client disconnected: {sid}')
# Note: We don't stop the stream on disconnect since multiple users can be connected
@socketio.on('start_stream')
def handle_start_stream(data):
try:
if not server_ready:
# Tell client to keep showing spinner
emit('server_status', {'ready': server_ready, 'busy': False})
return
n_steps = int(data.get('n_steps', 8))
cfg = float(data.get('cfg', 0))
fps = int(data.get('fps', 30))
clamp = bool(data.get('clamp', True))
print(f"Starting stream @ {fps} FPS (n_steps={n_steps}, cfg={cfg}, clamp={clamp})")
try:
start_stream(n_steps=n_steps, cfg=cfg, fps=fps, clamp=clamp)
emit('stream_started', {'status': 'ok'})
except Exception as e:
print(f"Error starting stream: {e}")
import traceback
traceback.print_exc()
emit('error', {'message': str(e)})
except Exception as e:
print(f"Error in handle_start_stream: {e}")
import traceback
traceback.print_exc()
emit('error', {'message': f'Failed to start stream: {str(e)}'})
@socketio.on('action')
def handle_action(data):
global latest_action
action = int(data.get('action', 1))
with stream_lock:
latest_action = action
emit('action_ack', {'received': action, 'will_apply_to_frame_index': frame_index})
@socketio.on('stop_stream')
def handle_stop_stream():
print('Stopping stream')
stop_stream()
# --------------------------
# Entrypoint
# --------------------------
if __name__ == '__main__':
# Start model initialization in background thread so server starts immediately
init_thread = threading.Thread(target=initialize_model, daemon=True)
init_thread.start()
# Use PORT environment variable for Hugging Face Spaces, default to 7860
port = int(os.environ.get('PORT', 7860))
print(f"Starting Flask server on http://0.0.0.0:{port}")
print("Model will load in background...")
socketio.run(app, host='0.0.0.0', port=port, debug=False, allow_unsafe_werkzeug=True, use_reloader=False)
|