Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import torch.nn as nn | |
| import math | |
| from pytorch3d.renderer import HarmonicEmbedding | |
| class TimeStepEmbedding(nn.Module): | |
| # learned from https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/nn.py | |
| def __init__(self, dim=256, max_period=10000): | |
| super().__init__() | |
| self.dim = dim | |
| self.max_period = max_period | |
| self.linear = nn.Sequential( | |
| nn.Linear(dim, dim // 2), | |
| nn.SiLU(), | |
| nn.Linear(dim // 2, dim // 2), | |
| ) | |
| self.out_dim = dim // 2 | |
| def _compute_freqs(self, half): | |
| freqs = torch.exp( | |
| -math.log(self.max_period) | |
| * torch.arange(start=0, end=half, dtype=torch.float32) | |
| / half | |
| ) | |
| return freqs | |
| def forward(self, timesteps): | |
| half = self.dim // 2 | |
| freqs = self._compute_freqs(half).to(device=timesteps.device) | |
| args = timesteps[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if self.dim % 2: | |
| embedding = torch.cat( | |
| [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
| ) | |
| output = self.linear(embedding) | |
| return output | |
| class PoseEmbedding(nn.Module): | |
| def __init__(self, target_dim, n_harmonic_functions=10, append_input=True): | |
| super().__init__() | |
| self._emb_pose = HarmonicEmbedding( | |
| n_harmonic_functions=n_harmonic_functions, append_input=append_input | |
| ) | |
| self.out_dim = self._emb_pose.get_output_dim(target_dim) | |
| def forward(self, pose_encoding): | |
| e_pose_encoding = self._emb_pose(pose_encoding) | |
| return e_pose_encoding | |