Spaces:
Running
Running
admin
commited on
Commit
·
8948197
1
Parent(s):
bf97162
merge try
Browse files
app.py
CHANGED
|
@@ -29,63 +29,48 @@ def zero_padding(y: np.ndarray, end: int):
|
|
| 29 |
|
| 30 |
|
| 31 |
def audio2mel(audio_path: str, seg_len=20):
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
)
|
| 45 |
-
plt.close()
|
| 46 |
-
|
| 47 |
-
except Exception as e:
|
| 48 |
-
print(f"Error converting {audio_path} : {e}")
|
| 49 |
|
| 50 |
|
| 51 |
def audio2cqt(audio_path: str, seg_len=20):
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
)
|
| 65 |
-
plt.close()
|
| 66 |
-
|
| 67 |
-
except Exception as e:
|
| 68 |
-
print(f"Error converting {audio_path} : {e}")
|
| 69 |
|
| 70 |
|
| 71 |
def audio2chroma(audio_path: str, seg_len=20):
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
)
|
| 85 |
-
plt.close()
|
| 86 |
-
|
| 87 |
-
except Exception as e:
|
| 88 |
-
print(f"Error converting {audio_path} : {e}")
|
| 89 |
|
| 90 |
|
| 91 |
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
|
|
@@ -95,13 +80,15 @@ def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
|
|
| 95 |
if not wav_path:
|
| 96 |
return None, "Please input an audio!"
|
| 97 |
|
|
|
|
|
|
|
| 98 |
try:
|
| 99 |
model = EvalNet(log_name, len(CLASSES)).model
|
|
|
|
|
|
|
| 100 |
except Exception as e:
|
| 101 |
return None, f"{e}"
|
| 102 |
|
| 103 |
-
spec = log_name.split("_")[-3]
|
| 104 |
-
eval("audio2%s" % spec)(wav_path)
|
| 105 |
input = embed_img(f"{folder_path}/output.jpg")
|
| 106 |
output: torch.Tensor = model(input)
|
| 107 |
pred_id = torch.max(output.data, 1)[1]
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
def audio2mel(audio_path: str, seg_len=20):
|
| 32 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 33 |
+
y = zero_padding(y, seg_len * sr)
|
| 34 |
+
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
|
| 35 |
+
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
|
| 36 |
+
librosa.display.specshow(log_mel_spec)
|
| 37 |
+
plt.axis("off")
|
| 38 |
+
plt.savefig(
|
| 39 |
+
f"{TEMP_DIR}/output.jpg",
|
| 40 |
+
bbox_inches="tight",
|
| 41 |
+
pad_inches=0.0,
|
| 42 |
+
)
|
| 43 |
+
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
def audio2cqt(audio_path: str, seg_len=20):
|
| 47 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 48 |
+
y = zero_padding(y, seg_len * sr)
|
| 49 |
+
cqt_spec = librosa.cqt(y=y, sr=sr)
|
| 50 |
+
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
|
| 51 |
+
librosa.display.specshow(log_cqt_spec)
|
| 52 |
+
plt.axis("off")
|
| 53 |
+
plt.savefig(
|
| 54 |
+
f"{TEMP_DIR}/output.jpg",
|
| 55 |
+
bbox_inches="tight",
|
| 56 |
+
pad_inches=0.0,
|
| 57 |
+
)
|
| 58 |
+
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
def audio2chroma(audio_path: str, seg_len=20):
|
| 62 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 63 |
+
y = zero_padding(y, seg_len * sr)
|
| 64 |
+
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
|
| 65 |
+
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
|
| 66 |
+
librosa.display.specshow(log_chroma_spec)
|
| 67 |
+
plt.axis("off")
|
| 68 |
+
plt.savefig(
|
| 69 |
+
f"{TEMP_DIR}/output.jpg",
|
| 70 |
+
bbox_inches="tight",
|
| 71 |
+
pad_inches=0.0,
|
| 72 |
+
)
|
| 73 |
+
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
|
|
|
|
| 80 |
if not wav_path:
|
| 81 |
return None, "Please input an audio!"
|
| 82 |
|
| 83 |
+
spec = log_name.split("_")[-3]
|
| 84 |
+
os.makedirs(folder_path, exist_ok=True)
|
| 85 |
try:
|
| 86 |
model = EvalNet(log_name, len(CLASSES)).model
|
| 87 |
+
eval("audio2%s" % spec)(wav_path)
|
| 88 |
+
|
| 89 |
except Exception as e:
|
| 90 |
return None, f"{e}"
|
| 91 |
|
|
|
|
|
|
|
| 92 |
input = embed_img(f"{folder_path}/output.jpg")
|
| 93 |
output: torch.Tensor = model(input)
|
| 94 |
pred_id = torch.max(output.data, 1)[1]
|