Spaces:
Paused
Paused
Alessandro Piana
commited on
Commit
Β·
ad3a64a
1
Parent(s):
d9e7f33
dockerfile con logging 61
Browse files- life_coach_v1.py +343 -1184
- life_coach_v1_old.py +1222 -0
life_coach_v1.py
CHANGED
|
@@ -1,1222 +1,381 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
Life Coach
|
| 4 |
-
|
| 5 |
-
A simple command-line life coaching assistant using Microsoft's Phi-4 model.
|
| 6 |
-
Fine-tunes on life coaching conversations and provides interactive chat sessions.
|
| 7 |
"""
|
| 8 |
|
| 9 |
-
import torch
|
| 10 |
-
import json
|
| 11 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import gc
|
| 13 |
-
import
|
|
|
|
|
|
|
|
|
|
| 14 |
from pathlib import Path
|
| 15 |
-
from typing import Optional
|
| 16 |
-
from tqdm import tqdm
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
AutoTokenizer,
|
| 23 |
-
AutoModelForCausalLM,
|
| 24 |
-
TrainingArguments,
|
| 25 |
-
Trainer,
|
| 26 |
-
DataCollatorForSeq2Seq
|
| 27 |
-
)
|
| 28 |
-
from datasets import Dataset, load_dataset, concatenate_datasets
|
| 29 |
-
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType
|
| 30 |
-
import logging
|
| 31 |
-
import random
|
| 32 |
-
import shutil
|
| 33 |
-
import gzip
|
| 34 |
-
from typing import List, Dict
|
| 35 |
-
|
| 36 |
-
# Configure logging
|
| 37 |
logging.basicConfig(
|
| 38 |
-
level=logging.
|
| 39 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
| 40 |
)
|
| 41 |
logger = logging.getLogger(__name__)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
""
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
""
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
if torch.cuda.is_available():
|
| 54 |
-
# Clear PyTorch CUDA cache
|
| 55 |
-
torch.cuda.empty_cache()
|
| 56 |
-
|
| 57 |
-
# Run garbage collection
|
| 58 |
-
gc.collect()
|
| 59 |
-
|
| 60 |
-
# Get GPU memory stats
|
| 61 |
-
for i in range(torch.cuda.device_count()):
|
| 62 |
-
total = torch.cuda.get_device_properties(i).total_memory / 1024**3
|
| 63 |
-
reserved = torch.cuda.memory_reserved(i) / 1024**3
|
| 64 |
-
allocated = torch.cuda.memory_allocated(i) / 1024**3
|
| 65 |
-
free = total - reserved
|
| 66 |
-
|
| 67 |
-
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
|
| 68 |
-
logger.info(f" Total memory: {total:.2f} GB")
|
| 69 |
-
logger.info(f" Reserved: {reserved:.2f} GB")
|
| 70 |
-
logger.info(f" Allocated: {allocated:.2f} GB")
|
| 71 |
-
logger.info(f" Free: {free:.2f} GB")
|
| 72 |
-
|
| 73 |
-
if reserved > 1.0: # More than 1GB reserved
|
| 74 |
-
logger.warning(f" β οΈ GPU {i} has {reserved:.2f} GB reserved!")
|
| 75 |
-
logger.warning(f" β οΈ This might be from a previous run.")
|
| 76 |
-
logger.warning(f" β οΈ If you encounter OOM errors, kill other processes using:")
|
| 77 |
-
logger.warning(f" β οΈ nvidia-smi | grep python")
|
| 78 |
-
else:
|
| 79 |
-
logger.warning("No CUDA GPUs available! Running on CPU (very slow).")
|
| 80 |
-
|
| 81 |
-
logger.info("=" * 80)
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
def clear_hf_cache():
|
| 85 |
-
"""Clear Hugging Face datasets cache to save disk space."""
|
| 86 |
-
try:
|
| 87 |
-
from datasets import config
|
| 88 |
-
cache_dir = config.HF_DATASETS_CACHE
|
| 89 |
-
if os.path.exists(cache_dir):
|
| 90 |
-
# Get size before clearing
|
| 91 |
-
size_mb = sum(os.path.getsize(os.path.join(dirpath,filename))
|
| 92 |
-
for dirpath, _, filenames in os.walk(cache_dir)
|
| 93 |
-
for filename in filenames) / (1024 * 1024)
|
| 94 |
-
|
| 95 |
-
logger.info(f"Clearing HF cache ({size_mb:.1f} MB)...")
|
| 96 |
-
shutil.rmtree(cache_dir, ignore_errors=True)
|
| 97 |
-
os.makedirs(cache_dir, exist_ok=True)
|
| 98 |
-
logger.info("β Cache cleared")
|
| 99 |
-
except Exception as e:
|
| 100 |
-
logger.warning(f"Failed to clear cache: {e}")
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def load_mental_health_counseling() -> List[Dict]:
|
| 104 |
-
"""Load Amod/mental_health_counseling_conversations dataset - ALL samples."""
|
| 105 |
-
logger.info(f"Loading mental health counseling dataset...")
|
| 106 |
-
try:
|
| 107 |
-
dataset = load_dataset("Amod/mental_health_counseling_conversations", split="train")
|
| 108 |
-
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 109 |
-
|
| 110 |
-
conversations = []
|
| 111 |
-
for item in dataset:
|
| 112 |
-
# Format: Context (user) -> Response (assistant)
|
| 113 |
-
conversations.append({
|
| 114 |
-
"messages": [
|
| 115 |
-
{"role": "user", "content": item.get("Context", "").strip()},
|
| 116 |
-
{"role": "assistant", "content": item.get("Response", "").strip()}
|
| 117 |
-
]
|
| 118 |
-
})
|
| 119 |
-
|
| 120 |
-
logger.info(f"β Loaded {len(conversations)} mental health counseling conversations")
|
| 121 |
-
return conversations
|
| 122 |
-
except Exception as e:
|
| 123 |
-
logger.warning(f"Failed to load mental health counseling dataset: {e}")
|
| 124 |
-
return []
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
def load_counsel_chat() -> List[Dict]:
|
| 128 |
-
"""Load nbertagnolli/counsel-chat dataset - ALL samples."""
|
| 129 |
-
logger.info(f"Loading CounselChat (nbertagnolli) dataset...")
|
| 130 |
-
try:
|
| 131 |
-
dataset = load_dataset("nbertagnolli/counsel-chat", split="train")
|
| 132 |
-
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 133 |
-
|
| 134 |
-
conversations = []
|
| 135 |
-
for item in dataset:
|
| 136 |
-
# Try different possible field names
|
| 137 |
-
question = None
|
| 138 |
-
answer = None
|
| 139 |
-
|
| 140 |
-
# Common field patterns
|
| 141 |
-
for q_field in ["questionText", "question", "query", "input", "user_message"]:
|
| 142 |
-
if q_field in item and item.get(q_field):
|
| 143 |
-
question = item[q_field].strip()
|
| 144 |
-
break
|
| 145 |
-
|
| 146 |
-
for a_field in ["answerText", "answer", "response", "output", "counselor_message"]:
|
| 147 |
-
if a_field in item and item.get(a_field):
|
| 148 |
-
answer = item[a_field].strip()
|
| 149 |
-
break
|
| 150 |
-
|
| 151 |
-
if question and answer:
|
| 152 |
-
conversations.append({
|
| 153 |
-
"messages": [
|
| 154 |
-
{"role": "user", "content": question},
|
| 155 |
-
{"role": "assistant", "content": answer}
|
| 156 |
-
]
|
| 157 |
-
})
|
| 158 |
-
|
| 159 |
-
logger.info(f"β Loaded {len(conversations)} CounselChat conversations")
|
| 160 |
-
return conversations
|
| 161 |
-
except Exception as e:
|
| 162 |
-
logger.warning(f"Failed to load CounselChat dataset: {e}")
|
| 163 |
-
return []
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
def load_cbt_cognitive_distortions() -> List[Dict]:
|
| 167 |
-
"""Load epsilon3/cbt-cognitive-distortions-analysis dataset - ALL samples."""
|
| 168 |
-
logger.info(f"Loading CBT Cognitive Distortions dataset...")
|
| 169 |
-
try:
|
| 170 |
-
dataset = load_dataset("epsilon3/cbt-cognitive-distortions-analysis", split="train")
|
| 171 |
-
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 172 |
-
|
| 173 |
-
conversations = []
|
| 174 |
-
for item in dataset:
|
| 175 |
-
# Try different field patterns
|
| 176 |
-
user_msg = None
|
| 177 |
-
assistant_msg = None
|
| 178 |
-
|
| 179 |
-
for u_field in ["input", "text", "thought", "statement", "user_input"]:
|
| 180 |
-
if u_field in item and item.get(u_field):
|
| 181 |
-
user_msg = item[u_field].strip()
|
| 182 |
-
break
|
| 183 |
-
|
| 184 |
-
for a_field in ["output", "analysis", "reframe", "response", "cbt_response"]:
|
| 185 |
-
if a_field in item and item.get(a_field):
|
| 186 |
-
assistant_msg = item[a_field].strip()
|
| 187 |
-
break
|
| 188 |
-
|
| 189 |
-
if user_msg and assistant_msg:
|
| 190 |
-
conversations.append({
|
| 191 |
-
"messages": [
|
| 192 |
-
{"role": "user", "content": user_msg},
|
| 193 |
-
{"role": "assistant", "content": assistant_msg}
|
| 194 |
-
]
|
| 195 |
-
})
|
| 196 |
-
|
| 197 |
-
logger.info(f"β Loaded {len(conversations)} CBT Cognitive Distortions conversations")
|
| 198 |
-
return conversations
|
| 199 |
-
except Exception as e:
|
| 200 |
-
logger.warning(f"Failed to load CBT Cognitive Distortions dataset: {e}")
|
| 201 |
-
return []
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
def load_peer_counseling_reflections() -> List[Dict]:
|
| 205 |
-
"""Load emoneil/reflections-in-peer-counseling dataset - ALL samples."""
|
| 206 |
-
logger.info(f"Loading Peer Counseling Reflections dataset...")
|
| 207 |
-
try:
|
| 208 |
-
dataset = load_dataset("emoneil/reflections-in-peer-counseling", split="train")
|
| 209 |
-
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 210 |
-
|
| 211 |
-
conversations = []
|
| 212 |
-
for item in dataset:
|
| 213 |
-
# Try different field patterns
|
| 214 |
-
user_msg = None
|
| 215 |
-
assistant_msg = None
|
| 216 |
-
|
| 217 |
-
for u_field in ["question", "statement", "input", "user_message", "counselee"]:
|
| 218 |
-
if u_field in item and item.get(u_field):
|
| 219 |
-
user_msg = item[u_field].strip()
|
| 220 |
-
break
|
| 221 |
-
|
| 222 |
-
for a_field in ["reflection", "response", "output", "counselor_response", "counselor"]:
|
| 223 |
-
if a_field in item and item.get(a_field):
|
| 224 |
-
assistant_msg = item[a_field].strip()
|
| 225 |
-
break
|
| 226 |
-
|
| 227 |
-
if user_msg and assistant_msg:
|
| 228 |
-
conversations.append({
|
| 229 |
-
"messages": [
|
| 230 |
-
{"role": "user", "content": user_msg},
|
| 231 |
-
{"role": "assistant", "content": assistant_msg}
|
| 232 |
-
]
|
| 233 |
-
})
|
| 234 |
-
|
| 235 |
-
logger.info(f"β Loaded {len(conversations)} Peer Counseling Reflections conversations")
|
| 236 |
-
return conversations
|
| 237 |
-
except Exception as e:
|
| 238 |
-
logger.warning(f"Failed to load Peer Counseling Reflections dataset: {e}")
|
| 239 |
-
return []
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
def load_dolly_dataset() -> List[Dict]:
|
| 243 |
-
"""Load databricks-dolly-15k dataset (instruction-following) - ALL relevant samples."""
|
| 244 |
-
logger.info(f"Loading Dolly instruction dataset...")
|
| 245 |
-
try:
|
| 246 |
-
dataset = load_dataset("databricks/databricks-dolly-15k", split="train")
|
| 247 |
-
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 248 |
-
|
| 249 |
-
# Filter for relevant categories (brainstorming, open_qa, creative_writing)
|
| 250 |
-
relevant_categories = {"brainstorming", "open_qa", "creative_writing", "general_qa"}
|
| 251 |
-
|
| 252 |
-
conversations = []
|
| 253 |
-
for item in dataset:
|
| 254 |
-
if item.get("category", "") in relevant_categories:
|
| 255 |
-
instruction = item.get("instruction", "").strip()
|
| 256 |
-
context = item.get("context", "").strip()
|
| 257 |
-
response = item.get("response", "").strip()
|
| 258 |
-
|
| 259 |
-
# Combine instruction and context if both exist
|
| 260 |
-
user_message = f"{instruction}\n\n{context}" if context else instruction
|
| 261 |
-
|
| 262 |
-
if user_message and response:
|
| 263 |
-
conversations.append({
|
| 264 |
-
"messages": [
|
| 265 |
-
{"role": "user", "content": user_message},
|
| 266 |
-
{"role": "assistant", "content": response}
|
| 267 |
-
]
|
| 268 |
-
})
|
| 269 |
-
|
| 270 |
-
logger.info(f"β Loaded {len(conversations)} Dolly instruction conversations (filtered from {len(dataset)} total)")
|
| 271 |
-
return conversations
|
| 272 |
-
except Exception as e:
|
| 273 |
-
logger.warning(f"Failed to load Dolly dataset: {e}")
|
| 274 |
-
return []
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
def load_mentalchat16k() -> List[Dict]:
|
| 278 |
-
"""Load ShenLab/MentalChat16K dataset - ALL samples."""
|
| 279 |
-
logger.info(f"Loading MentalChat16K dataset...")
|
| 280 |
-
try:
|
| 281 |
-
dataset = load_dataset("ShenLab/MentalChat16K", split="train")
|
| 282 |
-
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 283 |
-
|
| 284 |
-
conversations = []
|
| 285 |
-
for item in dataset:
|
| 286 |
-
# Try different possible field names
|
| 287 |
-
user_msg = None
|
| 288 |
-
assistant_msg = None
|
| 289 |
-
|
| 290 |
-
# Common field name patterns
|
| 291 |
-
for user_field in ["query", "question", "input", "user", "prompt", "instruction"]:
|
| 292 |
-
if user_field in item and item.get(user_field):
|
| 293 |
-
user_msg = item[user_field].strip()
|
| 294 |
-
break
|
| 295 |
-
|
| 296 |
-
for assistant_field in ["response", "answer", "output", "assistant", "reply"]:
|
| 297 |
-
if assistant_field in item and item.get(assistant_field):
|
| 298 |
-
assistant_msg = item[assistant_field].strip()
|
| 299 |
-
break
|
| 300 |
-
|
| 301 |
-
if user_msg and assistant_msg:
|
| 302 |
-
conversations.append({
|
| 303 |
-
"messages": [
|
| 304 |
-
{"role": "user", "content": user_msg},
|
| 305 |
-
{"role": "assistant", "content": assistant_msg}
|
| 306 |
-
]
|
| 307 |
-
})
|
| 308 |
-
|
| 309 |
-
logger.info(f"β Loaded {len(conversations)} MentalChat16K conversations")
|
| 310 |
-
return conversations
|
| 311 |
-
except Exception as e:
|
| 312 |
-
logger.warning(f"Failed to load MentalChat16K dataset: {e}")
|
| 313 |
-
return []
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
def load_additional_mental_health_datasets() -> List[Dict]:
|
| 317 |
-
"""Load additional mental health datasets - ALL samples."""
|
| 318 |
-
logger.info(f"Loading additional mental health datasets...")
|
| 319 |
-
|
| 320 |
-
all_conversations = []
|
| 321 |
-
|
| 322 |
-
# List of additional datasets to try
|
| 323 |
-
additional_datasets = [
|
| 324 |
-
("heliosbrahma/mental_health_chatbot_dataset", ["prompt", "question"], ["response", "answer"]),
|
| 325 |
-
("mpingale/mental-health-chat-dataset", ["question", "query"], ["answer", "response"]),
|
| 326 |
-
("sauravjoshi23/psychology-dataset", ["input", "question"], ["output", "answer"]),
|
| 327 |
-
]
|
| 328 |
-
|
| 329 |
-
for dataset_name, user_fields, assistant_fields in additional_datasets:
|
| 330 |
-
try:
|
| 331 |
-
logger.info(f" Loading {dataset_name}...")
|
| 332 |
-
dataset = load_dataset(dataset_name, split="train")
|
| 333 |
-
logger.info(f" Has {len(dataset)} samples available")
|
| 334 |
-
|
| 335 |
-
for item in dataset:
|
| 336 |
-
# Try different field names
|
| 337 |
-
user_msg = None
|
| 338 |
-
assistant_msg = None
|
| 339 |
-
|
| 340 |
-
for field in user_fields:
|
| 341 |
-
if field in item and item.get(field):
|
| 342 |
-
user_msg = item[field].strip()
|
| 343 |
-
break
|
| 344 |
-
|
| 345 |
-
for field in assistant_fields:
|
| 346 |
-
if field in item and item.get(field):
|
| 347 |
-
assistant_msg = item[field].strip()
|
| 348 |
-
break
|
| 349 |
-
|
| 350 |
-
if user_msg and assistant_msg:
|
| 351 |
-
all_conversations.append({
|
| 352 |
-
"messages": [
|
| 353 |
-
{"role": "user", "content": user_msg},
|
| 354 |
-
{"role": "assistant", "content": assistant_msg}
|
| 355 |
-
]
|
| 356 |
-
})
|
| 357 |
-
|
| 358 |
-
logger.info(f" β Loaded {len([c for c in all_conversations if c])} from this dataset")
|
| 359 |
-
|
| 360 |
-
except Exception as e:
|
| 361 |
-
logger.warning(f" Failed: {e}")
|
| 362 |
-
continue
|
| 363 |
-
|
| 364 |
-
logger.info(f"β Loaded {len(all_conversations)} additional mental health conversations total")
|
| 365 |
-
return all_conversations
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
def quality_filter_conversation(conv: Dict, min_response_length: int = 50, max_total_length: int = 2048) -> bool:
|
| 369 |
-
"""Filter conversation based on quality criteria."""
|
| 370 |
-
try:
|
| 371 |
-
messages = conv.get("messages", [])
|
| 372 |
-
if len(messages) < 2:
|
| 373 |
-
return False
|
| 374 |
-
|
| 375 |
-
# Check response length
|
| 376 |
-
assistant_msg = [m for m in messages if m.get("role") == "assistant"]
|
| 377 |
-
if not assistant_msg:
|
| 378 |
-
return False
|
| 379 |
-
|
| 380 |
-
response = assistant_msg[0].get("content", "")
|
| 381 |
-
if len(response) < min_response_length:
|
| 382 |
-
return False
|
| 383 |
-
|
| 384 |
-
# Check total length
|
| 385 |
-
total_length = sum(len(m.get("content", "")) for m in messages)
|
| 386 |
-
if total_length > max_total_length:
|
| 387 |
-
return False
|
| 388 |
-
|
| 389 |
-
# Check for empty messages
|
| 390 |
-
if any(not m.get("content", "").strip() for m in messages):
|
| 391 |
-
return False
|
| 392 |
-
|
| 393 |
-
return True
|
| 394 |
-
except:
|
| 395 |
-
return False
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
def load_mixed_dataset(
|
| 399 |
-
total_samples: int = 100000,
|
| 400 |
-
cache_file: str = "mixed_lifecoach_dataset_100k.jsonl.gz", # Now compressed by default
|
| 401 |
-
use_cache: bool = True
|
| 402 |
-
) -> List[Dict]:
|
| 403 |
-
"""
|
| 404 |
-
Load and mix multiple datasets for comprehensive life coaching training.
|
| 405 |
-
Saves compressed cache to save disk space.
|
| 406 |
-
|
| 407 |
-
Datasets loaded (ALL available samples):
|
| 408 |
-
1. Mental Health Counseling (Amod/mental_health_counseling_conversations)
|
| 409 |
-
2. CounselChat (nbertagnolli/counsel-chat)
|
| 410 |
-
3. CBT Cognitive Distortions (epsilon3/cbt-cognitive-distortions-analysis)
|
| 411 |
-
4. Peer Counseling Reflections (emoneil/reflections-in-peer-counseling)
|
| 412 |
-
5. MentalChat16K (ShenLab/MentalChat16K)
|
| 413 |
-
6. Dolly Instructions (databricks/databricks-dolly-15k - filtered categories)
|
| 414 |
-
7-8. Additional mental health datasets (heliosbrahma, mpingale, sauravjoshi23)
|
| 415 |
-
"""
|
| 416 |
-
cache_path = Path(cache_file)
|
| 417 |
-
cache_path_uncompressed = Path(cache_file.replace('.gz', ''))
|
| 418 |
-
|
| 419 |
-
# Try to load from compressed cache first
|
| 420 |
-
if use_cache and cache_path.exists():
|
| 421 |
-
logger.info(f"Loading cached dataset from {cache_file} (compressed)...")
|
| 422 |
-
try:
|
| 423 |
-
conversations = []
|
| 424 |
-
with gzip.open(cache_path, 'rt', encoding='utf-8') as f:
|
| 425 |
-
for line in f:
|
| 426 |
-
conversations.append(json.loads(line.strip()))
|
| 427 |
-
logger.info(f"β Loaded {len(conversations)} conversations from compressed cache")
|
| 428 |
-
return conversations
|
| 429 |
-
except Exception as e:
|
| 430 |
-
logger.warning(f"Failed to load compressed cache: {e}. Trying uncompressed...")
|
| 431 |
-
|
| 432 |
-
# Try uncompressed cache (backward compatibility)
|
| 433 |
-
if use_cache and cache_path_uncompressed.exists():
|
| 434 |
-
logger.info(f"Loading cached dataset from {cache_path_uncompressed} (uncompressed)...")
|
| 435 |
try:
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
logger.info(f"
|
| 441 |
-
return conversations
|
| 442 |
except Exception as e:
|
| 443 |
-
logger.
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
logger.info("=" * 80)
|
| 447 |
-
logger.info(f"LOADING MIXED DATASET (Target: ~{total_samples} samples)")
|
| 448 |
-
logger.info("Loading ALL available samples from each dataset")
|
| 449 |
-
logger.info("=" * 80)
|
| 450 |
-
|
| 451 |
-
all_conversations = []
|
| 452 |
-
|
| 453 |
-
# Load each dataset ONE AT A TIME and clear cache after each
|
| 454 |
-
# This saves disk space by not keeping all downloads simultaneously
|
| 455 |
-
|
| 456 |
-
logger.info("Dataset 1/8: Mental Health Counseling (Amod)")
|
| 457 |
-
all_conversations.extend(load_mental_health_counseling())
|
| 458 |
-
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 459 |
-
clear_hf_cache()
|
| 460 |
-
gc.collect()
|
| 461 |
-
|
| 462 |
-
# Stop early if we've reached target
|
| 463 |
-
if len(all_conversations) >= total_samples:
|
| 464 |
-
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 465 |
-
else:
|
| 466 |
-
logger.info("Dataset 2/8: CounselChat (nbertagnolli)")
|
| 467 |
-
all_conversations.extend(load_counsel_chat())
|
| 468 |
-
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 469 |
-
clear_hf_cache()
|
| 470 |
-
gc.collect()
|
| 471 |
-
|
| 472 |
-
if len(all_conversations) >= total_samples:
|
| 473 |
-
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 474 |
-
else:
|
| 475 |
-
logger.info("Dataset 3/8: CBT Cognitive Distortions (epsilon3)")
|
| 476 |
-
all_conversations.extend(load_cbt_cognitive_distortions())
|
| 477 |
-
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 478 |
-
clear_hf_cache()
|
| 479 |
-
gc.collect()
|
| 480 |
-
|
| 481 |
-
if len(all_conversations) >= total_samples:
|
| 482 |
-
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 483 |
-
else:
|
| 484 |
-
logger.info("Dataset 4/8: Peer Counseling Reflections (emoneil)")
|
| 485 |
-
all_conversations.extend(load_peer_counseling_reflections())
|
| 486 |
-
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 487 |
-
clear_hf_cache()
|
| 488 |
-
gc.collect()
|
| 489 |
-
|
| 490 |
-
if len(all_conversations) >= total_samples:
|
| 491 |
-
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 492 |
-
else:
|
| 493 |
-
logger.info("Dataset 5/8: MentalChat16K (ShenLab)")
|
| 494 |
-
all_conversations.extend(load_mentalchat16k())
|
| 495 |
-
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 496 |
-
clear_hf_cache()
|
| 497 |
-
gc.collect()
|
| 498 |
-
|
| 499 |
-
if len(all_conversations) >= total_samples:
|
| 500 |
-
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 501 |
-
else:
|
| 502 |
-
logger.info("Dataset 6/8: Dolly Instructions (databricks)")
|
| 503 |
-
all_conversations.extend(load_dolly_dataset())
|
| 504 |
-
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 505 |
-
clear_hf_cache()
|
| 506 |
-
gc.collect()
|
| 507 |
-
|
| 508 |
-
if len(all_conversations) >= total_samples:
|
| 509 |
-
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 510 |
-
else:
|
| 511 |
-
logger.info("Datasets 7-8: Additional Mental Health Datasets")
|
| 512 |
-
all_conversations.extend(load_additional_mental_health_datasets())
|
| 513 |
-
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 514 |
-
clear_hf_cache()
|
| 515 |
-
gc.collect()
|
| 516 |
-
|
| 517 |
-
logger.info("=" * 80)
|
| 518 |
-
logger.info(f"Total conversations loaded: {len(all_conversations)}")
|
| 519 |
-
|
| 520 |
-
# Apply quality filtering
|
| 521 |
-
logger.info("Applying quality filters...")
|
| 522 |
-
filtered_conversations = [conv for conv in all_conversations if quality_filter_conversation(conv)]
|
| 523 |
-
logger.info(f"β After filtering: {len(filtered_conversations)} conversations")
|
| 524 |
-
|
| 525 |
-
# Shuffle to mix datasets
|
| 526 |
-
random.shuffle(filtered_conversations)
|
| 527 |
-
|
| 528 |
-
# Trim to target size
|
| 529 |
-
if len(filtered_conversations) > total_samples:
|
| 530 |
-
filtered_conversations = filtered_conversations[:total_samples]
|
| 531 |
-
|
| 532 |
-
logger.info(f"Final dataset size: {len(filtered_conversations)} conversations")
|
| 533 |
-
|
| 534 |
-
# Save compressed cache to save disk space
|
| 535 |
-
if use_cache:
|
| 536 |
-
logger.info(f"Saving compressed cache to {cache_file}...")
|
| 537 |
-
try:
|
| 538 |
-
with gzip.open(cache_path, 'wt', encoding='utf-8') as f:
|
| 539 |
-
for conv in filtered_conversations:
|
| 540 |
-
f.write(json.dumps(conv, ensure_ascii=False) + '\n')
|
| 541 |
-
|
| 542 |
-
# Get file sizes for comparison
|
| 543 |
-
compressed_size_mb = cache_path.stat().st_size / (1024 * 1024)
|
| 544 |
-
logger.info(f"β Compressed cache saved successfully ({compressed_size_mb:.1f} MB)")
|
| 545 |
-
except Exception as e:
|
| 546 |
-
logger.warning(f"Failed to save compressed cache: {e}")
|
| 547 |
-
|
| 548 |
-
logger.info("=" * 80)
|
| 549 |
-
return filtered_conversations
|
| 550 |
-
|
| 551 |
|
| 552 |
class LifeCoachModel:
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
"""
|
| 563 |
-
Initialize the Life Coach model.
|
| 564 |
-
|
| 565 |
-
Args:
|
| 566 |
-
model_name: Hugging Face model identifier
|
| 567 |
-
model_save_path: Path to save/load fine-tuned model
|
| 568 |
-
train_file: Path to training data file (JSONL format)
|
| 569 |
-
max_length: Maximum sequence length for training
|
| 570 |
-
"""
|
| 571 |
self.model_name = model_name
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
self.model_save_path = local_path
|
| 589 |
else:
|
| 590 |
-
self.
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
logger.info(f"Device: {self.device}")
|
| 597 |
-
logger.info(f"Model: {model_name}")
|
| 598 |
-
logger.info(f"Save path: {self.model_save_path}")
|
| 599 |
-
logger.info(f"Training file: {self.train_file}")
|
| 600 |
-
|
| 601 |
self.tokenizer = None
|
| 602 |
self.model = None
|
| 603 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 604 |
def load_tokenizer(self):
|
| 605 |
-
"""
|
| 606 |
-
logger.info("
|
|
|
|
| 607 |
|
| 608 |
-
cache_dir = "/data/hf_cache"
|
| 609 |
-
os.makedirs(cache_dir, exist_ok=True)
|
| 610 |
-
|
| 611 |
try:
|
|
|
|
|
|
|
| 612 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 613 |
self.model_name,
|
| 614 |
-
cache_dir=cache_dir,
|
| 615 |
-
local_files_only=False, # Permette download solo se non esiste
|
| 616 |
trust_remote_code=True,
|
| 617 |
-
|
| 618 |
)
|
| 619 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 620 |
except Exception as e:
|
| 621 |
-
logger.error(f"
|
|
|
|
| 622 |
raise
|
| 623 |
-
def load_model(self, fine_tuned=True):
|
| 624 |
-
"""Load the fine-tuned model with safe settings for HF Spaces."""
|
| 625 |
-
logger.info(f"Loading {'fine-tuned' if fine_tuned else 'base'} model from {self.model_save_path}")
|
| 626 |
-
|
| 627 |
-
# Forza impostazioni sicure
|
| 628 |
-
import torch
|
| 629 |
-
from transformers import AutoModelForCausalLM
|
| 630 |
-
from peft import PeftModel
|
| 631 |
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
device_map="auto",
|
| 639 |
-
trust_remote_code=True,
|
| 640 |
-
low_cpu_mem_usage=True,
|
| 641 |
-
offload_folder="/tmp/offload", # Usa /tmp per offload
|
| 642 |
-
cache_dir="/data/hf_cache"
|
| 643 |
-
)
|
| 644 |
-
|
| 645 |
if fine_tuned:
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
logger.info("Model loaded successfully!")
|
| 659 |
-
|
| 660 |
-
def load_training_data(self, num_samples: Optional[int] = None) -> Dataset:
|
| 661 |
-
"""
|
| 662 |
-
Load training data from mixed datasets or JSONL file.
|
| 663 |
-
|
| 664 |
-
Args:
|
| 665 |
-
num_samples: Number of samples to load (None for 100,000 default)
|
| 666 |
-
|
| 667 |
-
Returns:
|
| 668 |
-
Dataset object
|
| 669 |
-
"""
|
| 670 |
-
# Try to load from mixed datasets first (new method)
|
| 671 |
-
# If train_file doesn't exist or is the old one, use mixed datasets
|
| 672 |
-
use_mixed_datasets = True
|
| 673 |
-
|
| 674 |
-
if self.train_file.exists():
|
| 675 |
-
# Check if it's the old single dataset file
|
| 676 |
-
if "cbt_life_coach" in str(self.train_file):
|
| 677 |
-
logger.info("Found old training file. Using new mixed datasets instead...")
|
| 678 |
-
use_mixed_datasets = True
|
| 679 |
else:
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
cache_file = f"mixed_lifecoach_dataset_{num_samples}.jsonl.gz" # Compressed format
|
| 692 |
-
data = load_mixed_dataset(
|
| 693 |
-
total_samples=num_samples,
|
| 694 |
-
cache_file=cache_file,
|
| 695 |
-
use_cache=True
|
| 696 |
)
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
Phi-4 uses:
|
| 731 |
-
<|system|>
|
| 732 |
-
{system message}<|end|>
|
| 733 |
-
<|user|>
|
| 734 |
-
{user message}<|end|>
|
| 735 |
-
<|assistant|>
|
| 736 |
-
{assistant response}<|end|>
|
| 737 |
-
"""
|
| 738 |
-
texts = []
|
| 739 |
-
|
| 740 |
-
# Handle both 'conversations' (our format) and 'messages' (standard format)
|
| 741 |
-
conversations_key = 'conversations' if 'conversations' in examples else 'messages'
|
| 742 |
-
|
| 743 |
-
for conversation in examples[conversations_key]:
|
| 744 |
-
text = ""
|
| 745 |
-
for message in conversation:
|
| 746 |
-
# Handle both 'from'/'value' and 'role'/'content' formats
|
| 747 |
-
if 'from' in message:
|
| 748 |
-
role = message['from']
|
| 749 |
-
content = message['value']
|
| 750 |
-
else:
|
| 751 |
-
role = message['role']
|
| 752 |
-
content = message['content']
|
| 753 |
-
|
| 754 |
-
# Convert to Phi-4 format
|
| 755 |
-
if role == 'system':
|
| 756 |
-
text += f"<|system|>\n{content}<|end|>\n"
|
| 757 |
-
elif role == 'user':
|
| 758 |
-
text += f"<|user|>\n{content}<|end|>\n"
|
| 759 |
-
elif role == 'assistant':
|
| 760 |
-
text += f"<|assistant|>\n{content}<|end|>\n"
|
| 761 |
-
|
| 762 |
-
texts.append(text)
|
| 763 |
-
|
| 764 |
-
# Tokenize with dynamic padding (like quantum server)
|
| 765 |
-
# Don't pad here - let DataCollatorForSeq2Seq handle it dynamically per batch
|
| 766 |
-
model_inputs = self.tokenizer(
|
| 767 |
-
texts,
|
| 768 |
-
max_length=self.max_length,
|
| 769 |
-
truncation=True,
|
| 770 |
-
padding=False, # Dynamic padding - saves massive memory!
|
| 771 |
-
return_tensors=None # Don't convert to tensors yet
|
| 772 |
-
)
|
| 773 |
-
|
| 774 |
-
# Set labels (for causal language modeling, labels = input_ids)
|
| 775 |
-
# Note: .copy() instead of .clone() since we're not using tensors yet
|
| 776 |
-
model_inputs["labels"] = model_inputs["input_ids"].copy()
|
| 777 |
-
|
| 778 |
-
return model_inputs
|
| 779 |
-
|
| 780 |
-
def setup_lora(self):
|
| 781 |
-
"""Setup LoRA (Low-Rank Adaptation) for efficient fine-tuning."""
|
| 782 |
-
logger.info("Setting up LoRA adapters...")
|
| 783 |
-
|
| 784 |
-
# Prepare model for k-bit training (critical for load_in_8bit=True)
|
| 785 |
-
logger.info("Preparing model for 8-bit training...")
|
| 786 |
-
self.model = prepare_model_for_kbit_training(self.model)
|
| 787 |
-
|
| 788 |
-
# Enable gradient checkpointing to save GPU memory
|
| 789 |
-
# This reduces memory usage by 20-30 GB with minimal performance impact
|
| 790 |
-
if hasattr(self.model, 'gradient_checkpointing_enable'):
|
| 791 |
-
self.model.gradient_checkpointing_enable()
|
| 792 |
-
logger.info("β Gradient checkpointing enabled (saves 20-30 GB GPU memory)")
|
| 793 |
-
|
| 794 |
-
# LoRA configuration
|
| 795 |
-
lora_config = LoraConfig(
|
| 796 |
-
task_type=TaskType.CAUSAL_LM,
|
| 797 |
-
r=16, # Rank
|
| 798 |
-
lora_alpha=32,
|
| 799 |
-
lora_dropout=0.1,
|
| 800 |
-
bias="none",
|
| 801 |
-
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"] # Attention layers
|
| 802 |
-
)
|
| 803 |
-
|
| 804 |
-
# Apply LoRA
|
| 805 |
-
self.model = get_peft_model(self.model, lora_config)
|
| 806 |
-
|
| 807 |
-
# Print trainable parameters
|
| 808 |
-
trainable_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
|
| 809 |
-
total_params = sum(p.numel() for p in self.model.parameters())
|
| 810 |
-
|
| 811 |
-
logger.info(f"Trainable parameters: {trainable_params:,} / {total_params:,} "
|
| 812 |
-
f"({100 * trainable_params / total_params:.2f}%)")
|
| 813 |
-
|
| 814 |
-
def fine_tune(
|
| 815 |
-
self,
|
| 816 |
-
num_samples: Optional[int] = 5000,
|
| 817 |
-
epochs: int = 3,
|
| 818 |
-
batch_size: int = 8,
|
| 819 |
-
learning_rate: float = 5e-5,
|
| 820 |
-
gradient_accumulation_steps: int = 2
|
| 821 |
-
):
|
| 822 |
-
"""
|
| 823 |
-
Fine-tune the model on life coaching data.
|
| 824 |
-
|
| 825 |
-
Args:
|
| 826 |
-
num_samples: Number of training samples (None for all)
|
| 827 |
-
epochs: Number of training epochs
|
| 828 |
-
batch_size: Training batch size
|
| 829 |
-
learning_rate: Learning rate
|
| 830 |
-
gradient_accumulation_steps: Gradient accumulation steps (for memory efficiency)
|
| 831 |
-
"""
|
| 832 |
-
logger.info("=" * 80)
|
| 833 |
-
logger.info("STARTING FINE-TUNING")
|
| 834 |
-
logger.info("=" * 80)
|
| 835 |
-
|
| 836 |
-
# Load data
|
| 837 |
-
dataset = self.load_training_data(num_samples)
|
| 838 |
-
|
| 839 |
-
# Setup LoRA
|
| 840 |
-
self.setup_lora()
|
| 841 |
-
|
| 842 |
-
# Training arguments
|
| 843 |
-
training_args = TrainingArguments(
|
| 844 |
-
output_dir="./training_output",
|
| 845 |
-
num_train_epochs=epochs,
|
| 846 |
-
per_device_train_batch_size=batch_size,
|
| 847 |
-
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 848 |
-
learning_rate=learning_rate,
|
| 849 |
-
fp16=True, # Mixed precision training
|
| 850 |
-
logging_steps=10,
|
| 851 |
-
save_strategy="epoch",
|
| 852 |
-
save_total_limit=2,
|
| 853 |
-
warmup_steps=100,
|
| 854 |
-
weight_decay=0.01,
|
| 855 |
-
report_to="none", # Disable wandb/tensorboard
|
| 856 |
-
)
|
| 857 |
-
|
| 858 |
-
# Data collator
|
| 859 |
-
data_collator = DataCollatorForSeq2Seq(
|
| 860 |
-
tokenizer=self.tokenizer,
|
| 861 |
-
model=self.model,
|
| 862 |
-
padding=True
|
| 863 |
-
)
|
| 864 |
-
|
| 865 |
-
# Trainer
|
| 866 |
-
trainer = Trainer(
|
| 867 |
-
model=self.model,
|
| 868 |
-
args=training_args,
|
| 869 |
-
train_dataset=dataset,
|
| 870 |
-
data_collator=data_collator,
|
| 871 |
-
)
|
| 872 |
-
|
| 873 |
-
# Train
|
| 874 |
-
logger.info("Training started...")
|
| 875 |
-
trainer.train()
|
| 876 |
-
|
| 877 |
-
logger.info("=" * 80)
|
| 878 |
-
logger.info("TRAINING COMPLETED")
|
| 879 |
-
logger.info("=" * 80)
|
| 880 |
-
|
| 881 |
-
# Save model
|
| 882 |
-
self.save_model()
|
| 883 |
-
|
| 884 |
-
def save_model(self):
|
| 885 |
-
"""Save the fine-tuned model to disk."""
|
| 886 |
-
logger.info(f"Saving model to {self.model_save_path}")
|
| 887 |
-
|
| 888 |
-
self.model_save_path.mkdir(parents=True, exist_ok=True)
|
| 889 |
-
|
| 890 |
-
# Save model and tokenizer
|
| 891 |
-
self.model.save_pretrained(str(self.model_save_path))
|
| 892 |
-
self.tokenizer.save_pretrained(str(self.model_save_path))
|
| 893 |
-
|
| 894 |
-
logger.info("Model saved successfully")
|
| 895 |
-
|
| 896 |
-
def generate_response(self, prompt: str, max_new_tokens: int = 128, conversation_history: list = None) -> str:
|
| 897 |
-
"""
|
| 898 |
-
Generate a response to a user prompt.
|
| 899 |
-
|
| 900 |
-
Args:
|
| 901 |
-
prompt: User's input message
|
| 902 |
-
max_new_tokens: Maximum tokens to generate
|
| 903 |
-
conversation_history: List of previous messages for context
|
| 904 |
-
|
| 905 |
-
Returns:
|
| 906 |
-
Generated response
|
| 907 |
-
"""
|
| 908 |
-
# Build full conversation context with system prompt
|
| 909 |
-
formatted_prompt = ""
|
| 910 |
-
|
| 911 |
-
# Add system prompt to guide the model's behavior
|
| 912 |
-
system_prompt = """You are Robert, a friendly and experienced life coach. Here's your background:
|
| 913 |
-
|
| 914 |
-
About You:
|
| 915 |
-
- Name: Robert (Bob to friends)
|
| 916 |
-
- Age: 42 years old
|
| 917 |
-
- Experience: 15 years as a certified life coach and motivational speaker
|
| 918 |
-
- Education: Master's degree in Psychology from UC Berkeley
|
| 919 |
-
- Specialties: Personal growth, career transitions, work-life balance, goal setting, stress management
|
| 920 |
-
- Personal: Married with two kids, enjoy hiking and meditation in your free time
|
| 921 |
-
- Approach: Warm, empathetic, practical, and solution-focused
|
| 922 |
-
|
| 923 |
-
Your Coaching Style:
|
| 924 |
-
- Respond ONLY to what the user actually tells you - never make assumptions about their problems
|
| 925 |
-
- Start conversations in a welcoming, open manner
|
| 926 |
-
- Ask clarifying questions to understand their situation better
|
| 927 |
-
- Provide practical, actionable advice based on what they share
|
| 928 |
-
- Be encouraging and positive, but also honest and realistic
|
| 929 |
-
- Keep responses concise and focused (2-4 sentences usually)
|
| 930 |
-
- Share brief personal insights when relevant, but keep the focus on the client
|
| 931 |
-
|
| 932 |
-
Important: Never assume clients have problems they haven't mentioned. Let them guide the conversation and share what's on their mind."""
|
| 933 |
-
|
| 934 |
-
formatted_prompt += f"<|system|>\n{system_prompt}<|end|>\n"
|
| 935 |
-
|
| 936 |
-
# Add conversation history if provided
|
| 937 |
-
if conversation_history:
|
| 938 |
-
for msg in conversation_history:
|
| 939 |
-
if msg["role"] == "user":
|
| 940 |
-
formatted_prompt += f"<|user|>\n{msg['content']}<|end|>\n"
|
| 941 |
-
elif msg["role"] == "assistant":
|
| 942 |
-
formatted_prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
|
| 943 |
-
|
| 944 |
-
# Add current prompt
|
| 945 |
-
formatted_prompt += f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"
|
| 946 |
-
|
| 947 |
-
# DEBUG: Print the full prompt being sent to the model
|
| 948 |
-
logger.info("=" * 80)
|
| 949 |
-
logger.info("FULL PROMPT SENT TO MODEL:")
|
| 950 |
-
logger.info(formatted_prompt)
|
| 951 |
-
logger.info("=" * 80)
|
| 952 |
-
|
| 953 |
-
# Tokenize
|
| 954 |
-
inputs = self.tokenizer(
|
| 955 |
-
formatted_prompt,
|
| 956 |
-
return_tensors="pt",
|
| 957 |
-
truncation=True,
|
| 958 |
-
max_length=self.max_length
|
| 959 |
-
).to(self.device)
|
| 960 |
-
|
| 961 |
-
# Get input length to extract only new tokens
|
| 962 |
-
input_length = inputs['input_ids'].shape[1]
|
| 963 |
-
|
| 964 |
-
# Get the token ID for <|end|> to use as a stopping token
|
| 965 |
-
end_token_id = self.tokenizer.convert_tokens_to_ids("<|end|>")
|
| 966 |
-
|
| 967 |
-
# Build list of EOS token IDs (stop generation at <|end|> or EOS)
|
| 968 |
-
eos_token_ids = [self.tokenizer.eos_token_id]
|
| 969 |
-
if end_token_id is not None and end_token_id != self.tokenizer.unk_token_id:
|
| 970 |
-
eos_token_ids.append(end_token_id)
|
| 971 |
-
|
| 972 |
-
# Generate
|
| 973 |
-
with torch.no_grad():
|
| 974 |
-
outputs = self.model.generate(
|
| 975 |
-
**inputs,
|
| 976 |
-
max_new_tokens=max_new_tokens,
|
| 977 |
-
temperature=0.7, # Balanced - coherent but still creative
|
| 978 |
-
top_p=0.9, # Standard setting for focused responses
|
| 979 |
-
top_k=50, # Add top-k sampling
|
| 980 |
-
do_sample=True,
|
| 981 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
| 982 |
-
eos_token_id=eos_token_ids, # Stop at <|end|> or EOS
|
| 983 |
-
repetition_penalty=1.15 # Stronger penalty to prevent repetition
|
| 984 |
)
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
|
| 1008 |
-
|
| 1009 |
-
|
| 1010 |
-
|
| 1011 |
-
|
| 1012 |
-
|
| 1013 |
-
|
| 1014 |
-
|
| 1015 |
-
|
| 1016 |
-
|
| 1017 |
-
|
| 1018 |
-
|
| 1019 |
-
|
| 1020 |
-
|
| 1021 |
-
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
|
| 1027 |
-
|
| 1028 |
-
|
| 1029 |
-
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
-
|
| 1033 |
-
|
| 1034 |
-
|
| 1035 |
-
|
| 1036 |
-
|
| 1037 |
-
|
| 1038 |
-
|
| 1039 |
-
|
| 1040 |
-
|
| 1041 |
-
|
| 1042 |
-
|
| 1043 |
-
|
| 1044 |
-
|
| 1045 |
-
|
| 1046 |
-
|
| 1047 |
-
|
| 1048 |
-
|
| 1049 |
-
|
| 1050 |
-
|
| 1051 |
-
|
| 1052 |
-
"role
|
| 1053 |
-
|
| 1054 |
-
|
| 1055 |
-
|
| 1056 |
-
|
| 1057 |
-
|
| 1058 |
-
|
| 1059 |
-
|
| 1060 |
-
|
| 1061 |
-
|
| 1062 |
-
|
| 1063 |
-
|
| 1064 |
-
|
| 1065 |
-
|
| 1066 |
-
parser = argparse.ArgumentParser(
|
| 1067 |
-
description="Life Coach v1 - Phi-4 based life coaching assistant"
|
| 1068 |
-
)
|
| 1069 |
-
|
| 1070 |
-
parser.add_argument(
|
| 1071 |
-
"--mode",
|
| 1072 |
-
type=str,
|
| 1073 |
-
choices=["train", "chat", "both"],
|
| 1074 |
-
default="both",
|
| 1075 |
-
help="Mode: train (fine-tune only), chat (chat only), both (train then chat)"
|
| 1076 |
-
)
|
| 1077 |
-
|
| 1078 |
-
parser.add_argument(
|
| 1079 |
-
"--model-name",
|
| 1080 |
-
type=str,
|
| 1081 |
-
default="microsoft/Phi-4",
|
| 1082 |
-
help="Hugging Face model name"
|
| 1083 |
-
)
|
| 1084 |
-
|
| 1085 |
-
parser.add_argument(
|
| 1086 |
-
"--model-path",
|
| 1087 |
-
type=str,
|
| 1088 |
-
default="/data/life_coach_model",
|
| 1089 |
-
help="Path to save/load fine-tuned model"
|
| 1090 |
-
)
|
| 1091 |
-
|
| 1092 |
-
parser.add_argument(
|
| 1093 |
-
"--train-file",
|
| 1094 |
-
type=str,
|
| 1095 |
-
default="cbt_life_coach_improved_50000.jsonl",
|
| 1096 |
-
help="Path to training data file (JSONL format)"
|
| 1097 |
-
)
|
| 1098 |
-
|
| 1099 |
-
parser.add_argument(
|
| 1100 |
-
"--num-samples",
|
| 1101 |
-
type=int,
|
| 1102 |
-
default=-1,
|
| 1103 |
-
help="Number of training samples (default: -1 for all 100,000 from mixed datasets)"
|
| 1104 |
-
)
|
| 1105 |
-
|
| 1106 |
-
parser.add_argument(
|
| 1107 |
-
"--epochs",
|
| 1108 |
-
type=int,
|
| 1109 |
-
default=3,
|
| 1110 |
-
help="Number of training epochs"
|
| 1111 |
-
)
|
| 1112 |
-
|
| 1113 |
-
parser.add_argument(
|
| 1114 |
-
"--batch-size",
|
| 1115 |
-
type=int,
|
| 1116 |
-
default=4,
|
| 1117 |
-
help="Training batch size (default: 4 for memory safety)"
|
| 1118 |
-
)
|
| 1119 |
-
|
| 1120 |
-
parser.add_argument(
|
| 1121 |
-
"--learning-rate",
|
| 1122 |
-
type=float,
|
| 1123 |
-
default=5e-5,
|
| 1124 |
-
help="Learning rate (default: 5e-5, matching quantum server)"
|
| 1125 |
-
)
|
| 1126 |
-
|
| 1127 |
-
parser.add_argument(
|
| 1128 |
-
"--gradient-accumulation",
|
| 1129 |
-
type=int,
|
| 1130 |
-
default=4,
|
| 1131 |
-
help="Gradient accumulation steps (default: 4, effective batch=16)"
|
| 1132 |
-
)
|
| 1133 |
-
|
| 1134 |
-
parser.add_argument(
|
| 1135 |
-
"--force-retrain",
|
| 1136 |
-
action="store_true",
|
| 1137 |
-
help="Force retraining even if fine-tuned model exists"
|
| 1138 |
-
)
|
| 1139 |
-
|
| 1140 |
-
args = parser.parse_args()
|
| 1141 |
-
|
| 1142 |
-
# Clean up GPU memory before starting
|
| 1143 |
-
cleanup_gpu_memory()
|
| 1144 |
-
|
| 1145 |
-
# Initialize model
|
| 1146 |
-
coach = LifeCoachModel(
|
| 1147 |
-
model_name=args.model_name,
|
| 1148 |
-
model_save_path=args.model_path,
|
| 1149 |
-
train_file=args.train_file
|
| 1150 |
-
)
|
| 1151 |
-
|
| 1152 |
-
# Load tokenizer
|
| 1153 |
-
coach.load_tokenizer()
|
| 1154 |
-
|
| 1155 |
-
# Check if fine-tuned model already exists
|
| 1156 |
-
model_exists = coach.model_save_path.exists() and (coach.model_save_path / "adapter_model.safetensors").exists()
|
| 1157 |
-
|
| 1158 |
-
# Training mode
|
| 1159 |
-
if args.mode in ["train", "both"]:
|
| 1160 |
-
# Check if we should skip training
|
| 1161 |
-
if model_exists and not args.force_retrain:
|
| 1162 |
-
logger.info("=" * 80)
|
| 1163 |
-
logger.info("FINE-TUNED MODEL ALREADY EXISTS")
|
| 1164 |
-
logger.info("=" * 80)
|
| 1165 |
-
logger.info(f"Found existing model at: {coach.model_save_path}")
|
| 1166 |
-
logger.info("Skipping training. Loading existing model...")
|
| 1167 |
-
logger.info("(Use --force-retrain to retrain from scratch)")
|
| 1168 |
-
logger.info("=" * 80)
|
| 1169 |
-
|
| 1170 |
-
# Load the existing fine-tuned model
|
| 1171 |
-
coach.load_model(fine_tuned=True)
|
| 1172 |
-
else:
|
| 1173 |
-
if args.force_retrain and model_exists:
|
| 1174 |
-
logger.info("=" * 80)
|
| 1175 |
-
logger.info("FORCING RETRAINING (--force-retrain flag set)")
|
| 1176 |
-
logger.info("=" * 80)
|
| 1177 |
-
|
| 1178 |
-
# Load base model for training
|
| 1179 |
-
coach.load_model(fine_tuned=False)
|
| 1180 |
-
|
| 1181 |
-
# Fine-tune
|
| 1182 |
-
num_samples = None if args.num_samples == -1 else args.num_samples
|
| 1183 |
-
coach.fine_tune(
|
| 1184 |
-
num_samples=num_samples,
|
| 1185 |
-
epochs=args.epochs,
|
| 1186 |
-
batch_size=args.batch_size,
|
| 1187 |
-
learning_rate=args.learning_rate,
|
| 1188 |
-
gradient_accumulation_steps=args.gradient_accumulation
|
| 1189 |
)
|
| 1190 |
-
|
| 1191 |
-
|
| 1192 |
-
|
| 1193 |
-
|
| 1194 |
-
|
| 1195 |
-
|
| 1196 |
-
|
| 1197 |
-
|
| 1198 |
-
|
| 1199 |
-
|
| 1200 |
-
|
| 1201 |
-
|
| 1202 |
-
|
| 1203 |
-
|
| 1204 |
-
|
| 1205 |
-
|
| 1206 |
-
|
| 1207 |
-
|
| 1208 |
-
logger.
|
| 1209 |
-
logger.
|
| 1210 |
-
logger.
|
| 1211 |
-
|
| 1212 |
-
|
| 1213 |
-
|
| 1214 |
-
|
| 1215 |
-
|
| 1216 |
-
|
| 1217 |
-
|
| 1218 |
-
|
| 1219 |
-
|
| 1220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1221 |
if __name__ == "__main__":
|
| 1222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
Life Coach Model - DEBUG VERSION
|
| 4 |
+
Versione con logging estensivo per diagnosticare blocchi su HF Spaces
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
|
|
|
|
|
|
| 7 |
import os
|
| 8 |
+
import torch
|
| 9 |
+
import logging
|
| 10 |
+
import time
|
| 11 |
+
import traceback
|
| 12 |
import gc
|
| 13 |
+
import threading
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 16 |
+
from peft import PeftModel
|
| 17 |
from pathlib import Path
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
# Installa psutil se non presente (per HF Spaces)
|
| 20 |
+
try:
|
| 21 |
+
import psutil
|
| 22 |
+
except ImportError:
|
| 23 |
+
import subprocess
|
| 24 |
+
subprocess.check_call(["pip", "install", "psutil", "--break-system-packages"])
|
| 25 |
+
import psutil
|
| 26 |
|
| 27 |
+
# Setup logging ultra-dettagliato
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
logging.basicConfig(
|
| 29 |
+
level=logging.DEBUG,
|
| 30 |
+
format='%(asctime)s - [PID:%(process)d] - %(levelname)s - %(message)s'
|
| 31 |
)
|
| 32 |
logger = logging.getLogger(__name__)
|
| 33 |
|
| 34 |
+
def log_system_status(prefix=""):
|
| 35 |
+
"""Log dettagliato dello stato del sistema"""
|
| 36 |
+
logger.info(f"{'='*60}")
|
| 37 |
+
logger.info(f"{prefix} SYSTEM STATUS CHECK")
|
| 38 |
+
logger.info(f"PID: {os.getpid()}")
|
| 39 |
+
logger.info(f"Thread ID: {threading.get_ident()}")
|
| 40 |
+
|
| 41 |
+
# CPU info
|
| 42 |
+
cpu_percent = psutil.cpu_percent(interval=0.1)
|
| 43 |
+
logger.info(f"CPU Usage: {cpu_percent}%")
|
| 44 |
+
|
| 45 |
+
# Memory info
|
| 46 |
+
mem = psutil.virtual_memory()
|
| 47 |
+
logger.info(f"RAM: {mem.used/1e9:.2f}GB used / {mem.total/1e9:.2f}GB total ({mem.percent}%)")
|
| 48 |
+
|
| 49 |
+
# GPU info if available
|
| 50 |
if torch.cuda.is_available():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
try:
|
| 52 |
+
gpu_mem = torch.cuda.mem_get_info()
|
| 53 |
+
logger.info(f"GPU Memory: {gpu_mem[0]/1e9:.2f}GB free / {gpu_mem[1]/1e9:.2f}GB total")
|
| 54 |
+
logger.info(f"GPU Allocated: {torch.cuda.memory_allocated()/1e9:.2f}GB")
|
| 55 |
+
logger.info(f"GPU Reserved: {torch.cuda.memory_reserved()/1e9:.2f}GB")
|
| 56 |
+
logger.info(f"CUDA Device: {torch.cuda.get_device_name()}")
|
|
|
|
| 57 |
except Exception as e:
|
| 58 |
+
logger.error(f"Error getting GPU info: {e}")
|
| 59 |
+
|
| 60 |
+
logger.info(f"{'='*60}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
class LifeCoachModel:
|
| 63 |
+
def __init__(self, model_name="microsoft/Phi-4", model_save_path="data/life_coach_model",
|
| 64 |
+
train_file=None):
|
| 65 |
+
"""Initialize the Life Coach model with extensive logging."""
|
| 66 |
+
logger.info(f"[INIT] Starting LifeCoachModel initialization")
|
| 67 |
+
logger.info(f"[INIT] Model name: {model_name}")
|
| 68 |
+
logger.info(f"[INIT] Save path: {model_save_path}")
|
| 69 |
+
|
| 70 |
+
log_system_status("[INIT-START]")
|
| 71 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
self.model_name = model_name
|
| 73 |
+
self.model_save_path = model_save_path
|
| 74 |
+
self.train_file = train_file
|
| 75 |
+
|
| 76 |
+
# Device detection con logging
|
| 77 |
+
logger.info(f"[INIT] Checking CUDA availability...")
|
| 78 |
+
if torch.cuda.is_available():
|
| 79 |
+
self.device = torch.device("cuda")
|
| 80 |
+
logger.info(f"[INIT] β
CUDA is available")
|
| 81 |
+
logger.info(f"[INIT] CUDA version: {torch.version.cuda}")
|
| 82 |
+
logger.info(f"[INIT] PyTorch version: {torch.__version__}")
|
| 83 |
+
|
| 84 |
+
# Clear GPU memory
|
| 85 |
+
logger.info(f"[INIT] Clearing GPU cache...")
|
| 86 |
+
torch.cuda.empty_cache()
|
| 87 |
+
gc.collect()
|
| 88 |
+
logger.info(f"[INIT] GPU cache cleared")
|
|
|
|
| 89 |
else:
|
| 90 |
+
self.device = torch.device("cpu")
|
| 91 |
+
logger.warning(f"[INIT] β οΈ CUDA not available, using CPU")
|
| 92 |
+
|
| 93 |
+
logger.info(f"[INIT] Device set to: {self.device}")
|
| 94 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
self.tokenizer = None
|
| 96 |
self.model = None
|
| 97 |
+
|
| 98 |
+
# System prompt
|
| 99 |
+
self.system_prompt = """You are Robert, a friendly and experienced life coach. Keep responses concise."""
|
| 100 |
+
|
| 101 |
+
logger.info(f"[INIT] LifeCoachModel initialization complete")
|
| 102 |
+
log_system_status("[INIT-END]")
|
| 103 |
+
|
| 104 |
def load_tokenizer(self):
|
| 105 |
+
"""Load tokenizer with detailed logging."""
|
| 106 |
+
logger.info(f"[TOKENIZER] Starting tokenizer loading...")
|
| 107 |
+
logger.info(f"[TOKENIZER] Loading from: {self.model_name}")
|
| 108 |
|
|
|
|
|
|
|
|
|
|
| 109 |
try:
|
| 110 |
+
start_time = time.time()
|
| 111 |
+
|
| 112 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 113 |
self.model_name,
|
|
|
|
|
|
|
| 114 |
trust_remote_code=True,
|
| 115 |
+
cache_dir=os.environ.get('HF_HOME', None)
|
| 116 |
)
|
| 117 |
+
|
| 118 |
+
load_time = time.time() - start_time
|
| 119 |
+
logger.info(f"[TOKENIZER] β
Tokenizer loaded in {load_time:.2f} seconds")
|
| 120 |
+
logger.info(f"[TOKENIZER] Vocab size: {self.tokenizer.vocab_size}")
|
| 121 |
+
logger.info(f"[TOKENIZER] Pad token: {self.tokenizer.pad_token}")
|
| 122 |
+
|
| 123 |
+
# Set padding
|
| 124 |
+
if self.tokenizer.pad_token is None:
|
| 125 |
+
logger.info(f"[TOKENIZER] Setting pad token to eos token")
|
| 126 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 127 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
| 128 |
+
|
| 129 |
+
logger.info(f"[TOKENIZER] Tokenizer ready")
|
| 130 |
+
|
| 131 |
except Exception as e:
|
| 132 |
+
logger.error(f"[TOKENIZER] β Error loading tokenizer: {e}")
|
| 133 |
+
logger.error(f"[TOKENIZER] Traceback: {traceback.format_exc()}")
|
| 134 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
def load_model(self, fine_tuned=True):
|
| 137 |
+
"""Load model with EXTENSIVE logging at every step."""
|
| 138 |
+
logger.info(f"[MODEL] Starting model loading process...")
|
| 139 |
+
logger.info(f"[MODEL] Fine-tuned: {fine_tuned}")
|
| 140 |
+
log_system_status("[MODEL-LOAD-START]")
|
| 141 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
if fine_tuned:
|
| 143 |
+
adapter_path = Path(self.model_save_path)
|
| 144 |
+
alternate_path = Path(f"./{self.model_save_path}")
|
| 145 |
+
|
| 146 |
+
logger.info(f"[MODEL] Checking for adapter at: {adapter_path}")
|
| 147 |
+
logger.info(f"[MODEL] Alternate path: {alternate_path}")
|
| 148 |
+
|
| 149 |
+
if alternate_path.exists() and (alternate_path / "adapter_model.safetensors").exists():
|
| 150 |
+
model_path = str(alternate_path)
|
| 151 |
+
logger.info(f"[MODEL] β
Found adapter at alternate path: {model_path}")
|
| 152 |
+
elif adapter_path.exists() and (adapter_path / "adapter_model.safetensors").exists():
|
| 153 |
+
model_path = str(adapter_path)
|
| 154 |
+
logger.info(f"[MODEL] β
Found adapter at primary path: {model_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
else:
|
| 156 |
+
logger.error(f"[MODEL] β No adapter found, loading base model")
|
| 157 |
+
fine_tuned = False
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
# Quantization config con logging
|
| 161 |
+
logger.info(f"[MODEL] Setting up quantization config...")
|
| 162 |
+
quantization_config = BitsAndBytesConfig(
|
| 163 |
+
load_in_4bit=True,
|
| 164 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 165 |
+
bnb_4bit_quant_type="nf4",
|
| 166 |
+
bnb_4bit_use_double_quant=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
)
|
| 168 |
+
logger.info(f"[MODEL] Quantization config created")
|
| 169 |
+
|
| 170 |
+
# Load base model
|
| 171 |
+
logger.info(f"[MODEL] Loading base model from: {self.model_name}")
|
| 172 |
+
logger.info(f"[MODEL] This may take several minutes...")
|
| 173 |
+
|
| 174 |
+
start_time = time.time()
|
| 175 |
+
checkpoint_counter = 0
|
| 176 |
+
|
| 177 |
+
# Hook per monitorare il caricamento dei checkpoint
|
| 178 |
+
original_print = print
|
| 179 |
+
def counting_print(*args, **kwargs):
|
| 180 |
+
nonlocal checkpoint_counter
|
| 181 |
+
msg = ' '.join(str(arg) for arg in args)
|
| 182 |
+
if 'Loading checkpoint' in msg:
|
| 183 |
+
checkpoint_counter += 1
|
| 184 |
+
logger.info(f"[MODEL] Checkpoint {checkpoint_counter} - {msg}")
|
| 185 |
+
original_print(*args, **kwargs)
|
| 186 |
+
|
| 187 |
+
# Temporaneamente sostituisci print
|
| 188 |
+
import builtins
|
| 189 |
+
builtins.print = counting_print
|
| 190 |
+
|
| 191 |
+
logger.info(f"[MODEL] Calling AutoModelForCausalLM.from_pretrained...")
|
| 192 |
+
|
| 193 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 194 |
+
self.model_name,
|
| 195 |
+
quantization_config=quantization_config,
|
| 196 |
+
device_map="auto",
|
| 197 |
+
trust_remote_code=True,
|
| 198 |
+
torch_dtype=torch.float16,
|
| 199 |
+
cache_dir=os.environ.get('HF_HOME', None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
)
|
| 201 |
+
|
| 202 |
+
# Ripristina print originale
|
| 203 |
+
builtins.print = original_print
|
| 204 |
+
|
| 205 |
+
load_time = time.time() - start_time
|
| 206 |
+
logger.info(f"[MODEL] β
Base model loaded in {load_time:.2f} seconds")
|
| 207 |
+
|
| 208 |
+
log_system_status("[MODEL-AFTER-BASE-LOAD]")
|
| 209 |
+
|
| 210 |
+
# Load adapter if fine-tuned
|
| 211 |
+
if fine_tuned:
|
| 212 |
+
logger.info(f"[MODEL] Loading adapter from: {model_path}")
|
| 213 |
+
start_time = time.time()
|
| 214 |
+
|
| 215 |
+
self.model = PeftModel.from_pretrained(
|
| 216 |
+
self.model,
|
| 217 |
+
model_path,
|
| 218 |
+
device_map="auto"
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
adapter_time = time.time() - start_time
|
| 222 |
+
logger.info(f"[MODEL] β
Adapter loaded in {adapter_time:.2f} seconds")
|
| 223 |
+
|
| 224 |
+
logger.info(f"[MODEL] Merging adapter with base model...")
|
| 225 |
+
self.model = self.model.merge_and_unload()
|
| 226 |
+
logger.info(f"[MODEL] β
Model merged")
|
| 227 |
+
|
| 228 |
+
# Set eval mode
|
| 229 |
+
logger.info(f"[MODEL] Setting model to eval mode...")
|
| 230 |
+
self.model.eval()
|
| 231 |
+
|
| 232 |
+
logger.info(f"[MODEL] Model configuration:")
|
| 233 |
+
logger.info(f"[MODEL] - Parameters: {sum(p.numel() for p in self.model.parameters())/1e9:.2f}B")
|
| 234 |
+
logger.info(f"[MODEL] - Device map: {getattr(self.model, 'hf_device_map', 'Not available')}")
|
| 235 |
+
|
| 236 |
+
log_system_status("[MODEL-LOAD-COMPLETE]")
|
| 237 |
+
logger.info(f"[MODEL] β
β
β
Model loading COMPLETE")
|
| 238 |
+
|
| 239 |
+
except Exception as e:
|
| 240 |
+
logger.error(f"[MODEL] βββ CRITICAL ERROR during model loading")
|
| 241 |
+
logger.error(f"[MODEL] Error type: {type(e).__name__}")
|
| 242 |
+
logger.error(f"[MODEL] Error message: {str(e)}")
|
| 243 |
+
logger.error(f"[MODEL] Full traceback:\n{traceback.format_exc()}")
|
| 244 |
+
log_system_status("[MODEL-LOAD-ERROR]")
|
| 245 |
+
raise
|
| 246 |
+
|
| 247 |
+
def generate_response(self, prompt, max_new_tokens=256, conversation_history=None):
|
| 248 |
+
"""Generate response with DETAILED logging at every step."""
|
| 249 |
+
logger.info(f"{'='*80}")
|
| 250 |
+
logger.info(f"[GENERATE] STARTING GENERATION PROCESS")
|
| 251 |
+
logger.info(f"[GENERATE] Timestamp: {datetime.now().isoformat()}")
|
| 252 |
+
logger.info(f"[GENERATE] Prompt length: {len(prompt)} chars")
|
| 253 |
+
logger.info(f"[GENERATE] Max new tokens: {max_new_tokens}")
|
| 254 |
+
logger.info(f"[GENERATE] History items: {len(conversation_history) if conversation_history else 0}")
|
| 255 |
+
|
| 256 |
+
log_system_status("[GENERATE-START]")
|
| 257 |
+
|
| 258 |
+
try:
|
| 259 |
+
# Step 1: Build prompt
|
| 260 |
+
logger.info(f"[GENERATE-1] Building full prompt...")
|
| 261 |
+
full_prompt = f"<|system|>\n{self.system_prompt}<|end|>\n"
|
| 262 |
+
|
| 263 |
+
if conversation_history:
|
| 264 |
+
for msg in conversation_history:
|
| 265 |
+
role = msg.get('role', 'user')
|
| 266 |
+
content = msg.get('content', '')
|
| 267 |
+
full_prompt += f"<|{role}|>\n{content}<|end|>\n"
|
| 268 |
+
logger.info(f"[GENERATE-1] Added {role} message: {len(content)} chars")
|
| 269 |
+
|
| 270 |
+
full_prompt += f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"
|
| 271 |
+
logger.info(f"[GENERATE-1] Full prompt built: {len(full_prompt)} chars")
|
| 272 |
+
|
| 273 |
+
# Step 2: Tokenize
|
| 274 |
+
logger.info(f"[GENERATE-2] Starting tokenization...")
|
| 275 |
+
start_time = time.time()
|
| 276 |
+
|
| 277 |
+
inputs = self.tokenizer(
|
| 278 |
+
full_prompt,
|
| 279 |
+
return_tensors="pt",
|
| 280 |
+
truncation=True,
|
| 281 |
+
max_length=2048
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
)
|
| 283 |
+
|
| 284 |
+
tokenize_time = time.time() - start_time
|
| 285 |
+
logger.info(f"[GENERATE-2] Tokenization complete in {tokenize_time:.3f}s")
|
| 286 |
+
logger.info(f"[GENERATE-2] Input shape: {inputs['input_ids'].shape}")
|
| 287 |
+
logger.info(f"[GENERATE-2] Number of tokens: {inputs['input_ids'].shape[-1]}")
|
| 288 |
+
|
| 289 |
+
# Step 3: Move to device
|
| 290 |
+
logger.info(f"[GENERATE-3] Moving tensors to device: {self.device}")
|
| 291 |
+
start_time = time.time()
|
| 292 |
+
|
| 293 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 294 |
+
|
| 295 |
+
move_time = time.time() - start_time
|
| 296 |
+
logger.info(f"[GENERATE-3] Tensors moved in {move_time:.3f}s")
|
| 297 |
+
|
| 298 |
+
log_system_status("[GENERATE-BEFORE-MODEL]")
|
| 299 |
+
|
| 300 |
+
# Step 4: Generate
|
| 301 |
+
logger.info(f"[GENERATE-4] β‘ CALLING MODEL.GENERATE()...")
|
| 302 |
+
logger.info(f"[GENERATE-4] Generation parameters:")
|
| 303 |
+
logger.info(f"[GENERATE-4] - max_new_tokens: {max_new_tokens}")
|
| 304 |
+
logger.info(f"[GENERATE-4] - temperature: 0.7")
|
| 305 |
+
logger.info(f"[GENERATE-4] - do_sample: True")
|
| 306 |
+
|
| 307 |
+
start_time = time.time()
|
| 308 |
+
|
| 309 |
+
# CRITICAL POINT - This is where it might hang
|
| 310 |
+
logger.info(f"[GENERATE-4] >>> ENTERING model.generate() at {datetime.now().isoformat()}")
|
| 311 |
+
|
| 312 |
+
with torch.no_grad():
|
| 313 |
+
outputs = self.model.generate(
|
| 314 |
+
**inputs,
|
| 315 |
+
max_new_tokens=max_new_tokens,
|
| 316 |
+
temperature=0.7,
|
| 317 |
+
do_sample=True,
|
| 318 |
+
top_p=0.9,
|
| 319 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 320 |
+
eos_token_id=self.tokenizer.eos_token_id
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
logger.info(f"[GENERATE-4] <<< EXITED model.generate() at {datetime.now().isoformat()}")
|
| 324 |
+
|
| 325 |
+
generate_time = time.time() - start_time
|
| 326 |
+
logger.info(f"[GENERATE-4] β
Generation complete in {generate_time:.2f}s")
|
| 327 |
+
logger.info(f"[GENERATE-4] Output shape: {outputs.shape}")
|
| 328 |
+
logger.info(f"[GENERATE-4] Generated {outputs.shape[-1] - inputs['input_ids'].shape[-1]} new tokens")
|
| 329 |
+
|
| 330 |
+
log_system_status("[GENERATE-AFTER-MODEL]")
|
| 331 |
+
|
| 332 |
+
# Step 5: Decode
|
| 333 |
+
logger.info(f"[GENERATE-5] Decoding output...")
|
| 334 |
+
start_time = time.time()
|
| 335 |
+
|
| 336 |
+
response = self.tokenizer.decode(
|
| 337 |
+
outputs[0][inputs['input_ids'].shape[-1]:],
|
| 338 |
+
skip_special_tokens=True
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
decode_time = time.time() - start_time
|
| 342 |
+
logger.info(f"[GENERATE-5] Decoding complete in {decode_time:.3f}s")
|
| 343 |
+
logger.info(f"[GENERATE-5] Response length: {len(response)} chars")
|
| 344 |
+
logger.info(f"[GENERATE-5] Response preview: {response[:100]}...")
|
| 345 |
+
|
| 346 |
+
# Step 6: Cleanup
|
| 347 |
+
logger.info(f"[GENERATE-6] Cleaning up GPU memory...")
|
| 348 |
+
del inputs, outputs
|
| 349 |
+
torch.cuda.empty_cache()
|
| 350 |
+
gc.collect()
|
| 351 |
+
logger.info(f"[GENERATE-6] Cleanup complete")
|
| 352 |
+
|
| 353 |
+
log_system_status("[GENERATE-COMPLETE]")
|
| 354 |
+
|
| 355 |
+
logger.info(f"[GENERATE] β
β
β
GENERATION SUCCESSFUL")
|
| 356 |
+
logger.info(f"[GENERATE] Total time: {time.time() - start_time:.2f}s")
|
| 357 |
+
logger.info(f"{'='*80}")
|
| 358 |
+
|
| 359 |
+
return response
|
| 360 |
+
|
| 361 |
+
except Exception as e:
|
| 362 |
+
logger.error(f"[GENERATE] βββ ERROR DURING GENERATION")
|
| 363 |
+
logger.error(f"[GENERATE] Error type: {type(e).__name__}")
|
| 364 |
+
logger.error(f"[GENERATE] Error message: {str(e)}")
|
| 365 |
+
logger.error(f"[GENERATE] Full traceback:\n{traceback.format_exc()}")
|
| 366 |
+
log_system_status("[GENERATE-ERROR]")
|
| 367 |
+
|
| 368 |
+
# Return fallback message
|
| 369 |
+
return "I apologize, but I encountered an error while generating a response. Please try again."
|
| 370 |
+
|
| 371 |
+
# Test if this file is run directly
|
| 372 |
if __name__ == "__main__":
|
| 373 |
+
import threading
|
| 374 |
+
logger.info("Running test...")
|
| 375 |
+
|
| 376 |
+
model = LifeCoachModel()
|
| 377 |
+
model.load_tokenizer()
|
| 378 |
+
model.load_model(fine_tuned=True)
|
| 379 |
+
|
| 380 |
+
response = model.generate_response("Hello, how are you?", max_new_tokens=50)
|
| 381 |
+
logger.info(f"Test response: {response}")
|
life_coach_v1_old.py
ADDED
|
@@ -0,0 +1,1222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Life Coach v1 - Phi-4 Fine-tuned Life Coaching Assistant
|
| 4 |
+
|
| 5 |
+
A simple command-line life coaching assistant using Microsoft's Phi-4 model.
|
| 6 |
+
Fine-tunes on life coaching conversations and provides interactive chat sessions.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import json
|
| 11 |
+
import os
|
| 12 |
+
import gc
|
| 13 |
+
import argparse
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from typing import Optional
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
|
| 18 |
+
# Set PyTorch CUDA memory allocation config to reduce fragmentation
|
| 19 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
| 20 |
+
|
| 21 |
+
from transformers import (
|
| 22 |
+
AutoTokenizer,
|
| 23 |
+
AutoModelForCausalLM,
|
| 24 |
+
TrainingArguments,
|
| 25 |
+
Trainer,
|
| 26 |
+
DataCollatorForSeq2Seq
|
| 27 |
+
)
|
| 28 |
+
from datasets import Dataset, load_dataset, concatenate_datasets
|
| 29 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType
|
| 30 |
+
import logging
|
| 31 |
+
import random
|
| 32 |
+
import shutil
|
| 33 |
+
import gzip
|
| 34 |
+
from typing import List, Dict
|
| 35 |
+
|
| 36 |
+
# Configure logging
|
| 37 |
+
logging.basicConfig(
|
| 38 |
+
level=logging.INFO,
|
| 39 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
| 40 |
+
)
|
| 41 |
+
logger = logging.getLogger(__name__)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def cleanup_gpu_memory():
|
| 45 |
+
"""
|
| 46 |
+
Clean up GPU memory before starting the program.
|
| 47 |
+
Clears PyTorch cache and runs garbage collection.
|
| 48 |
+
"""
|
| 49 |
+
logger.info("=" * 80)
|
| 50 |
+
logger.info("GPU MEMORY CLEANUP")
|
| 51 |
+
logger.info("=" * 80)
|
| 52 |
+
|
| 53 |
+
if torch.cuda.is_available():
|
| 54 |
+
# Clear PyTorch CUDA cache
|
| 55 |
+
torch.cuda.empty_cache()
|
| 56 |
+
|
| 57 |
+
# Run garbage collection
|
| 58 |
+
gc.collect()
|
| 59 |
+
|
| 60 |
+
# Get GPU memory stats
|
| 61 |
+
for i in range(torch.cuda.device_count()):
|
| 62 |
+
total = torch.cuda.get_device_properties(i).total_memory / 1024**3
|
| 63 |
+
reserved = torch.cuda.memory_reserved(i) / 1024**3
|
| 64 |
+
allocated = torch.cuda.memory_allocated(i) / 1024**3
|
| 65 |
+
free = total - reserved
|
| 66 |
+
|
| 67 |
+
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
|
| 68 |
+
logger.info(f" Total memory: {total:.2f} GB")
|
| 69 |
+
logger.info(f" Reserved: {reserved:.2f} GB")
|
| 70 |
+
logger.info(f" Allocated: {allocated:.2f} GB")
|
| 71 |
+
logger.info(f" Free: {free:.2f} GB")
|
| 72 |
+
|
| 73 |
+
if reserved > 1.0: # More than 1GB reserved
|
| 74 |
+
logger.warning(f" β οΈ GPU {i} has {reserved:.2f} GB reserved!")
|
| 75 |
+
logger.warning(f" β οΈ This might be from a previous run.")
|
| 76 |
+
logger.warning(f" β οΈ If you encounter OOM errors, kill other processes using:")
|
| 77 |
+
logger.warning(f" β οΈ nvidia-smi | grep python")
|
| 78 |
+
else:
|
| 79 |
+
logger.warning("No CUDA GPUs available! Running on CPU (very slow).")
|
| 80 |
+
|
| 81 |
+
logger.info("=" * 80)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def clear_hf_cache():
|
| 85 |
+
"""Clear Hugging Face datasets cache to save disk space."""
|
| 86 |
+
try:
|
| 87 |
+
from datasets import config
|
| 88 |
+
cache_dir = config.HF_DATASETS_CACHE
|
| 89 |
+
if os.path.exists(cache_dir):
|
| 90 |
+
# Get size before clearing
|
| 91 |
+
size_mb = sum(os.path.getsize(os.path.join(dirpath,filename))
|
| 92 |
+
for dirpath, _, filenames in os.walk(cache_dir)
|
| 93 |
+
for filename in filenames) / (1024 * 1024)
|
| 94 |
+
|
| 95 |
+
logger.info(f"Clearing HF cache ({size_mb:.1f} MB)...")
|
| 96 |
+
shutil.rmtree(cache_dir, ignore_errors=True)
|
| 97 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 98 |
+
logger.info("β Cache cleared")
|
| 99 |
+
except Exception as e:
|
| 100 |
+
logger.warning(f"Failed to clear cache: {e}")
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def load_mental_health_counseling() -> List[Dict]:
|
| 104 |
+
"""Load Amod/mental_health_counseling_conversations dataset - ALL samples."""
|
| 105 |
+
logger.info(f"Loading mental health counseling dataset...")
|
| 106 |
+
try:
|
| 107 |
+
dataset = load_dataset("Amod/mental_health_counseling_conversations", split="train")
|
| 108 |
+
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 109 |
+
|
| 110 |
+
conversations = []
|
| 111 |
+
for item in dataset:
|
| 112 |
+
# Format: Context (user) -> Response (assistant)
|
| 113 |
+
conversations.append({
|
| 114 |
+
"messages": [
|
| 115 |
+
{"role": "user", "content": item.get("Context", "").strip()},
|
| 116 |
+
{"role": "assistant", "content": item.get("Response", "").strip()}
|
| 117 |
+
]
|
| 118 |
+
})
|
| 119 |
+
|
| 120 |
+
logger.info(f"β Loaded {len(conversations)} mental health counseling conversations")
|
| 121 |
+
return conversations
|
| 122 |
+
except Exception as e:
|
| 123 |
+
logger.warning(f"Failed to load mental health counseling dataset: {e}")
|
| 124 |
+
return []
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def load_counsel_chat() -> List[Dict]:
|
| 128 |
+
"""Load nbertagnolli/counsel-chat dataset - ALL samples."""
|
| 129 |
+
logger.info(f"Loading CounselChat (nbertagnolli) dataset...")
|
| 130 |
+
try:
|
| 131 |
+
dataset = load_dataset("nbertagnolli/counsel-chat", split="train")
|
| 132 |
+
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 133 |
+
|
| 134 |
+
conversations = []
|
| 135 |
+
for item in dataset:
|
| 136 |
+
# Try different possible field names
|
| 137 |
+
question = None
|
| 138 |
+
answer = None
|
| 139 |
+
|
| 140 |
+
# Common field patterns
|
| 141 |
+
for q_field in ["questionText", "question", "query", "input", "user_message"]:
|
| 142 |
+
if q_field in item and item.get(q_field):
|
| 143 |
+
question = item[q_field].strip()
|
| 144 |
+
break
|
| 145 |
+
|
| 146 |
+
for a_field in ["answerText", "answer", "response", "output", "counselor_message"]:
|
| 147 |
+
if a_field in item and item.get(a_field):
|
| 148 |
+
answer = item[a_field].strip()
|
| 149 |
+
break
|
| 150 |
+
|
| 151 |
+
if question and answer:
|
| 152 |
+
conversations.append({
|
| 153 |
+
"messages": [
|
| 154 |
+
{"role": "user", "content": question},
|
| 155 |
+
{"role": "assistant", "content": answer}
|
| 156 |
+
]
|
| 157 |
+
})
|
| 158 |
+
|
| 159 |
+
logger.info(f"β Loaded {len(conversations)} CounselChat conversations")
|
| 160 |
+
return conversations
|
| 161 |
+
except Exception as e:
|
| 162 |
+
logger.warning(f"Failed to load CounselChat dataset: {e}")
|
| 163 |
+
return []
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def load_cbt_cognitive_distortions() -> List[Dict]:
|
| 167 |
+
"""Load epsilon3/cbt-cognitive-distortions-analysis dataset - ALL samples."""
|
| 168 |
+
logger.info(f"Loading CBT Cognitive Distortions dataset...")
|
| 169 |
+
try:
|
| 170 |
+
dataset = load_dataset("epsilon3/cbt-cognitive-distortions-analysis", split="train")
|
| 171 |
+
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 172 |
+
|
| 173 |
+
conversations = []
|
| 174 |
+
for item in dataset:
|
| 175 |
+
# Try different field patterns
|
| 176 |
+
user_msg = None
|
| 177 |
+
assistant_msg = None
|
| 178 |
+
|
| 179 |
+
for u_field in ["input", "text", "thought", "statement", "user_input"]:
|
| 180 |
+
if u_field in item and item.get(u_field):
|
| 181 |
+
user_msg = item[u_field].strip()
|
| 182 |
+
break
|
| 183 |
+
|
| 184 |
+
for a_field in ["output", "analysis", "reframe", "response", "cbt_response"]:
|
| 185 |
+
if a_field in item and item.get(a_field):
|
| 186 |
+
assistant_msg = item[a_field].strip()
|
| 187 |
+
break
|
| 188 |
+
|
| 189 |
+
if user_msg and assistant_msg:
|
| 190 |
+
conversations.append({
|
| 191 |
+
"messages": [
|
| 192 |
+
{"role": "user", "content": user_msg},
|
| 193 |
+
{"role": "assistant", "content": assistant_msg}
|
| 194 |
+
]
|
| 195 |
+
})
|
| 196 |
+
|
| 197 |
+
logger.info(f"β Loaded {len(conversations)} CBT Cognitive Distortions conversations")
|
| 198 |
+
return conversations
|
| 199 |
+
except Exception as e:
|
| 200 |
+
logger.warning(f"Failed to load CBT Cognitive Distortions dataset: {e}")
|
| 201 |
+
return []
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def load_peer_counseling_reflections() -> List[Dict]:
|
| 205 |
+
"""Load emoneil/reflections-in-peer-counseling dataset - ALL samples."""
|
| 206 |
+
logger.info(f"Loading Peer Counseling Reflections dataset...")
|
| 207 |
+
try:
|
| 208 |
+
dataset = load_dataset("emoneil/reflections-in-peer-counseling", split="train")
|
| 209 |
+
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 210 |
+
|
| 211 |
+
conversations = []
|
| 212 |
+
for item in dataset:
|
| 213 |
+
# Try different field patterns
|
| 214 |
+
user_msg = None
|
| 215 |
+
assistant_msg = None
|
| 216 |
+
|
| 217 |
+
for u_field in ["question", "statement", "input", "user_message", "counselee"]:
|
| 218 |
+
if u_field in item and item.get(u_field):
|
| 219 |
+
user_msg = item[u_field].strip()
|
| 220 |
+
break
|
| 221 |
+
|
| 222 |
+
for a_field in ["reflection", "response", "output", "counselor_response", "counselor"]:
|
| 223 |
+
if a_field in item and item.get(a_field):
|
| 224 |
+
assistant_msg = item[a_field].strip()
|
| 225 |
+
break
|
| 226 |
+
|
| 227 |
+
if user_msg and assistant_msg:
|
| 228 |
+
conversations.append({
|
| 229 |
+
"messages": [
|
| 230 |
+
{"role": "user", "content": user_msg},
|
| 231 |
+
{"role": "assistant", "content": assistant_msg}
|
| 232 |
+
]
|
| 233 |
+
})
|
| 234 |
+
|
| 235 |
+
logger.info(f"β Loaded {len(conversations)} Peer Counseling Reflections conversations")
|
| 236 |
+
return conversations
|
| 237 |
+
except Exception as e:
|
| 238 |
+
logger.warning(f"Failed to load Peer Counseling Reflections dataset: {e}")
|
| 239 |
+
return []
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def load_dolly_dataset() -> List[Dict]:
|
| 243 |
+
"""Load databricks-dolly-15k dataset (instruction-following) - ALL relevant samples."""
|
| 244 |
+
logger.info(f"Loading Dolly instruction dataset...")
|
| 245 |
+
try:
|
| 246 |
+
dataset = load_dataset("databricks/databricks-dolly-15k", split="train")
|
| 247 |
+
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 248 |
+
|
| 249 |
+
# Filter for relevant categories (brainstorming, open_qa, creative_writing)
|
| 250 |
+
relevant_categories = {"brainstorming", "open_qa", "creative_writing", "general_qa"}
|
| 251 |
+
|
| 252 |
+
conversations = []
|
| 253 |
+
for item in dataset:
|
| 254 |
+
if item.get("category", "") in relevant_categories:
|
| 255 |
+
instruction = item.get("instruction", "").strip()
|
| 256 |
+
context = item.get("context", "").strip()
|
| 257 |
+
response = item.get("response", "").strip()
|
| 258 |
+
|
| 259 |
+
# Combine instruction and context if both exist
|
| 260 |
+
user_message = f"{instruction}\n\n{context}" if context else instruction
|
| 261 |
+
|
| 262 |
+
if user_message and response:
|
| 263 |
+
conversations.append({
|
| 264 |
+
"messages": [
|
| 265 |
+
{"role": "user", "content": user_message},
|
| 266 |
+
{"role": "assistant", "content": response}
|
| 267 |
+
]
|
| 268 |
+
})
|
| 269 |
+
|
| 270 |
+
logger.info(f"β Loaded {len(conversations)} Dolly instruction conversations (filtered from {len(dataset)} total)")
|
| 271 |
+
return conversations
|
| 272 |
+
except Exception as e:
|
| 273 |
+
logger.warning(f"Failed to load Dolly dataset: {e}")
|
| 274 |
+
return []
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def load_mentalchat16k() -> List[Dict]:
|
| 278 |
+
"""Load ShenLab/MentalChat16K dataset - ALL samples."""
|
| 279 |
+
logger.info(f"Loading MentalChat16K dataset...")
|
| 280 |
+
try:
|
| 281 |
+
dataset = load_dataset("ShenLab/MentalChat16K", split="train")
|
| 282 |
+
logger.info(f" Dataset has {len(dataset)} samples available")
|
| 283 |
+
|
| 284 |
+
conversations = []
|
| 285 |
+
for item in dataset:
|
| 286 |
+
# Try different possible field names
|
| 287 |
+
user_msg = None
|
| 288 |
+
assistant_msg = None
|
| 289 |
+
|
| 290 |
+
# Common field name patterns
|
| 291 |
+
for user_field in ["query", "question", "input", "user", "prompt", "instruction"]:
|
| 292 |
+
if user_field in item and item.get(user_field):
|
| 293 |
+
user_msg = item[user_field].strip()
|
| 294 |
+
break
|
| 295 |
+
|
| 296 |
+
for assistant_field in ["response", "answer", "output", "assistant", "reply"]:
|
| 297 |
+
if assistant_field in item and item.get(assistant_field):
|
| 298 |
+
assistant_msg = item[assistant_field].strip()
|
| 299 |
+
break
|
| 300 |
+
|
| 301 |
+
if user_msg and assistant_msg:
|
| 302 |
+
conversations.append({
|
| 303 |
+
"messages": [
|
| 304 |
+
{"role": "user", "content": user_msg},
|
| 305 |
+
{"role": "assistant", "content": assistant_msg}
|
| 306 |
+
]
|
| 307 |
+
})
|
| 308 |
+
|
| 309 |
+
logger.info(f"β Loaded {len(conversations)} MentalChat16K conversations")
|
| 310 |
+
return conversations
|
| 311 |
+
except Exception as e:
|
| 312 |
+
logger.warning(f"Failed to load MentalChat16K dataset: {e}")
|
| 313 |
+
return []
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def load_additional_mental_health_datasets() -> List[Dict]:
|
| 317 |
+
"""Load additional mental health datasets - ALL samples."""
|
| 318 |
+
logger.info(f"Loading additional mental health datasets...")
|
| 319 |
+
|
| 320 |
+
all_conversations = []
|
| 321 |
+
|
| 322 |
+
# List of additional datasets to try
|
| 323 |
+
additional_datasets = [
|
| 324 |
+
("heliosbrahma/mental_health_chatbot_dataset", ["prompt", "question"], ["response", "answer"]),
|
| 325 |
+
("mpingale/mental-health-chat-dataset", ["question", "query"], ["answer", "response"]),
|
| 326 |
+
("sauravjoshi23/psychology-dataset", ["input", "question"], ["output", "answer"]),
|
| 327 |
+
]
|
| 328 |
+
|
| 329 |
+
for dataset_name, user_fields, assistant_fields in additional_datasets:
|
| 330 |
+
try:
|
| 331 |
+
logger.info(f" Loading {dataset_name}...")
|
| 332 |
+
dataset = load_dataset(dataset_name, split="train")
|
| 333 |
+
logger.info(f" Has {len(dataset)} samples available")
|
| 334 |
+
|
| 335 |
+
for item in dataset:
|
| 336 |
+
# Try different field names
|
| 337 |
+
user_msg = None
|
| 338 |
+
assistant_msg = None
|
| 339 |
+
|
| 340 |
+
for field in user_fields:
|
| 341 |
+
if field in item and item.get(field):
|
| 342 |
+
user_msg = item[field].strip()
|
| 343 |
+
break
|
| 344 |
+
|
| 345 |
+
for field in assistant_fields:
|
| 346 |
+
if field in item and item.get(field):
|
| 347 |
+
assistant_msg = item[field].strip()
|
| 348 |
+
break
|
| 349 |
+
|
| 350 |
+
if user_msg and assistant_msg:
|
| 351 |
+
all_conversations.append({
|
| 352 |
+
"messages": [
|
| 353 |
+
{"role": "user", "content": user_msg},
|
| 354 |
+
{"role": "assistant", "content": assistant_msg}
|
| 355 |
+
]
|
| 356 |
+
})
|
| 357 |
+
|
| 358 |
+
logger.info(f" β Loaded {len([c for c in all_conversations if c])} from this dataset")
|
| 359 |
+
|
| 360 |
+
except Exception as e:
|
| 361 |
+
logger.warning(f" Failed: {e}")
|
| 362 |
+
continue
|
| 363 |
+
|
| 364 |
+
logger.info(f"β Loaded {len(all_conversations)} additional mental health conversations total")
|
| 365 |
+
return all_conversations
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
def quality_filter_conversation(conv: Dict, min_response_length: int = 50, max_total_length: int = 2048) -> bool:
|
| 369 |
+
"""Filter conversation based on quality criteria."""
|
| 370 |
+
try:
|
| 371 |
+
messages = conv.get("messages", [])
|
| 372 |
+
if len(messages) < 2:
|
| 373 |
+
return False
|
| 374 |
+
|
| 375 |
+
# Check response length
|
| 376 |
+
assistant_msg = [m for m in messages if m.get("role") == "assistant"]
|
| 377 |
+
if not assistant_msg:
|
| 378 |
+
return False
|
| 379 |
+
|
| 380 |
+
response = assistant_msg[0].get("content", "")
|
| 381 |
+
if len(response) < min_response_length:
|
| 382 |
+
return False
|
| 383 |
+
|
| 384 |
+
# Check total length
|
| 385 |
+
total_length = sum(len(m.get("content", "")) for m in messages)
|
| 386 |
+
if total_length > max_total_length:
|
| 387 |
+
return False
|
| 388 |
+
|
| 389 |
+
# Check for empty messages
|
| 390 |
+
if any(not m.get("content", "").strip() for m in messages):
|
| 391 |
+
return False
|
| 392 |
+
|
| 393 |
+
return True
|
| 394 |
+
except:
|
| 395 |
+
return False
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
def load_mixed_dataset(
|
| 399 |
+
total_samples: int = 100000,
|
| 400 |
+
cache_file: str = "mixed_lifecoach_dataset_100k.jsonl.gz", # Now compressed by default
|
| 401 |
+
use_cache: bool = True
|
| 402 |
+
) -> List[Dict]:
|
| 403 |
+
"""
|
| 404 |
+
Load and mix multiple datasets for comprehensive life coaching training.
|
| 405 |
+
Saves compressed cache to save disk space.
|
| 406 |
+
|
| 407 |
+
Datasets loaded (ALL available samples):
|
| 408 |
+
1. Mental Health Counseling (Amod/mental_health_counseling_conversations)
|
| 409 |
+
2. CounselChat (nbertagnolli/counsel-chat)
|
| 410 |
+
3. CBT Cognitive Distortions (epsilon3/cbt-cognitive-distortions-analysis)
|
| 411 |
+
4. Peer Counseling Reflections (emoneil/reflections-in-peer-counseling)
|
| 412 |
+
5. MentalChat16K (ShenLab/MentalChat16K)
|
| 413 |
+
6. Dolly Instructions (databricks/databricks-dolly-15k - filtered categories)
|
| 414 |
+
7-8. Additional mental health datasets (heliosbrahma, mpingale, sauravjoshi23)
|
| 415 |
+
"""
|
| 416 |
+
cache_path = Path(cache_file)
|
| 417 |
+
cache_path_uncompressed = Path(cache_file.replace('.gz', ''))
|
| 418 |
+
|
| 419 |
+
# Try to load from compressed cache first
|
| 420 |
+
if use_cache and cache_path.exists():
|
| 421 |
+
logger.info(f"Loading cached dataset from {cache_file} (compressed)...")
|
| 422 |
+
try:
|
| 423 |
+
conversations = []
|
| 424 |
+
with gzip.open(cache_path, 'rt', encoding='utf-8') as f:
|
| 425 |
+
for line in f:
|
| 426 |
+
conversations.append(json.loads(line.strip()))
|
| 427 |
+
logger.info(f"β Loaded {len(conversations)} conversations from compressed cache")
|
| 428 |
+
return conversations
|
| 429 |
+
except Exception as e:
|
| 430 |
+
logger.warning(f"Failed to load compressed cache: {e}. Trying uncompressed...")
|
| 431 |
+
|
| 432 |
+
# Try uncompressed cache (backward compatibility)
|
| 433 |
+
if use_cache and cache_path_uncompressed.exists():
|
| 434 |
+
logger.info(f"Loading cached dataset from {cache_path_uncompressed} (uncompressed)...")
|
| 435 |
+
try:
|
| 436 |
+
conversations = []
|
| 437 |
+
with open(cache_path_uncompressed, 'r', encoding='utf-8') as f:
|
| 438 |
+
for line in f:
|
| 439 |
+
conversations.append(json.loads(line.strip()))
|
| 440 |
+
logger.info(f"β Loaded {len(conversations)} conversations from uncompressed cache")
|
| 441 |
+
return conversations
|
| 442 |
+
except Exception as e:
|
| 443 |
+
logger.warning(f"Failed to load cache: {e}. Rebuilding dataset...")
|
| 444 |
+
|
| 445 |
+
# Load ALL available samples from each dataset
|
| 446 |
+
logger.info("=" * 80)
|
| 447 |
+
logger.info(f"LOADING MIXED DATASET (Target: ~{total_samples} samples)")
|
| 448 |
+
logger.info("Loading ALL available samples from each dataset")
|
| 449 |
+
logger.info("=" * 80)
|
| 450 |
+
|
| 451 |
+
all_conversations = []
|
| 452 |
+
|
| 453 |
+
# Load each dataset ONE AT A TIME and clear cache after each
|
| 454 |
+
# This saves disk space by not keeping all downloads simultaneously
|
| 455 |
+
|
| 456 |
+
logger.info("Dataset 1/8: Mental Health Counseling (Amod)")
|
| 457 |
+
all_conversations.extend(load_mental_health_counseling())
|
| 458 |
+
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 459 |
+
clear_hf_cache()
|
| 460 |
+
gc.collect()
|
| 461 |
+
|
| 462 |
+
# Stop early if we've reached target
|
| 463 |
+
if len(all_conversations) >= total_samples:
|
| 464 |
+
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 465 |
+
else:
|
| 466 |
+
logger.info("Dataset 2/8: CounselChat (nbertagnolli)")
|
| 467 |
+
all_conversations.extend(load_counsel_chat())
|
| 468 |
+
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 469 |
+
clear_hf_cache()
|
| 470 |
+
gc.collect()
|
| 471 |
+
|
| 472 |
+
if len(all_conversations) >= total_samples:
|
| 473 |
+
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 474 |
+
else:
|
| 475 |
+
logger.info("Dataset 3/8: CBT Cognitive Distortions (epsilon3)")
|
| 476 |
+
all_conversations.extend(load_cbt_cognitive_distortions())
|
| 477 |
+
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 478 |
+
clear_hf_cache()
|
| 479 |
+
gc.collect()
|
| 480 |
+
|
| 481 |
+
if len(all_conversations) >= total_samples:
|
| 482 |
+
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 483 |
+
else:
|
| 484 |
+
logger.info("Dataset 4/8: Peer Counseling Reflections (emoneil)")
|
| 485 |
+
all_conversations.extend(load_peer_counseling_reflections())
|
| 486 |
+
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 487 |
+
clear_hf_cache()
|
| 488 |
+
gc.collect()
|
| 489 |
+
|
| 490 |
+
if len(all_conversations) >= total_samples:
|
| 491 |
+
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 492 |
+
else:
|
| 493 |
+
logger.info("Dataset 5/8: MentalChat16K (ShenLab)")
|
| 494 |
+
all_conversations.extend(load_mentalchat16k())
|
| 495 |
+
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 496 |
+
clear_hf_cache()
|
| 497 |
+
gc.collect()
|
| 498 |
+
|
| 499 |
+
if len(all_conversations) >= total_samples:
|
| 500 |
+
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 501 |
+
else:
|
| 502 |
+
logger.info("Dataset 6/8: Dolly Instructions (databricks)")
|
| 503 |
+
all_conversations.extend(load_dolly_dataset())
|
| 504 |
+
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 505 |
+
clear_hf_cache()
|
| 506 |
+
gc.collect()
|
| 507 |
+
|
| 508 |
+
if len(all_conversations) >= total_samples:
|
| 509 |
+
logger.info(f"β Reached target of {total_samples} samples, stopping dataset loading")
|
| 510 |
+
else:
|
| 511 |
+
logger.info("Datasets 7-8: Additional Mental Health Datasets")
|
| 512 |
+
all_conversations.extend(load_additional_mental_health_datasets())
|
| 513 |
+
logger.info(f" Running total: {len(all_conversations)} conversations")
|
| 514 |
+
clear_hf_cache()
|
| 515 |
+
gc.collect()
|
| 516 |
+
|
| 517 |
+
logger.info("=" * 80)
|
| 518 |
+
logger.info(f"Total conversations loaded: {len(all_conversations)}")
|
| 519 |
+
|
| 520 |
+
# Apply quality filtering
|
| 521 |
+
logger.info("Applying quality filters...")
|
| 522 |
+
filtered_conversations = [conv for conv in all_conversations if quality_filter_conversation(conv)]
|
| 523 |
+
logger.info(f"β After filtering: {len(filtered_conversations)} conversations")
|
| 524 |
+
|
| 525 |
+
# Shuffle to mix datasets
|
| 526 |
+
random.shuffle(filtered_conversations)
|
| 527 |
+
|
| 528 |
+
# Trim to target size
|
| 529 |
+
if len(filtered_conversations) > total_samples:
|
| 530 |
+
filtered_conversations = filtered_conversations[:total_samples]
|
| 531 |
+
|
| 532 |
+
logger.info(f"Final dataset size: {len(filtered_conversations)} conversations")
|
| 533 |
+
|
| 534 |
+
# Save compressed cache to save disk space
|
| 535 |
+
if use_cache:
|
| 536 |
+
logger.info(f"Saving compressed cache to {cache_file}...")
|
| 537 |
+
try:
|
| 538 |
+
with gzip.open(cache_path, 'wt', encoding='utf-8') as f:
|
| 539 |
+
for conv in filtered_conversations:
|
| 540 |
+
f.write(json.dumps(conv, ensure_ascii=False) + '\n')
|
| 541 |
+
|
| 542 |
+
# Get file sizes for comparison
|
| 543 |
+
compressed_size_mb = cache_path.stat().st_size / (1024 * 1024)
|
| 544 |
+
logger.info(f"β Compressed cache saved successfully ({compressed_size_mb:.1f} MB)")
|
| 545 |
+
except Exception as e:
|
| 546 |
+
logger.warning(f"Failed to save compressed cache: {e}")
|
| 547 |
+
|
| 548 |
+
logger.info("=" * 80)
|
| 549 |
+
return filtered_conversations
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
class LifeCoachModel:
|
| 553 |
+
"""Life coaching assistant using Phi-4 model."""
|
| 554 |
+
|
| 555 |
+
def __init__(
|
| 556 |
+
self,
|
| 557 |
+
model_name: str = "microsoft/Phi-4",
|
| 558 |
+
model_save_path: str = "/data/life_coach_model",
|
| 559 |
+
train_file: str = "cbt_life_coach_improved_50000.jsonl",
|
| 560 |
+
max_length: int = 2048
|
| 561 |
+
):
|
| 562 |
+
"""
|
| 563 |
+
Initialize the Life Coach model.
|
| 564 |
+
|
| 565 |
+
Args:
|
| 566 |
+
model_name: Hugging Face model identifier
|
| 567 |
+
model_save_path: Path to save/load fine-tuned model
|
| 568 |
+
train_file: Path to training data file (JSONL format)
|
| 569 |
+
max_length: Maximum sequence length for training
|
| 570 |
+
"""
|
| 571 |
+
self.model_name = model_name
|
| 572 |
+
|
| 573 |
+
# Check if /data is writable, otherwise use local directory
|
| 574 |
+
save_path = Path(model_save_path)
|
| 575 |
+
if str(save_path).startswith("/data"):
|
| 576 |
+
try:
|
| 577 |
+
Path("/data").mkdir(parents=True, exist_ok=True)
|
| 578 |
+
# Test write permissions
|
| 579 |
+
test_file = Path("/data/.test_write")
|
| 580 |
+
test_file.touch()
|
| 581 |
+
test_file.unlink()
|
| 582 |
+
self.model_save_path = save_path
|
| 583 |
+
logger.info(f"Using /data directory for model storage: {save_path}")
|
| 584 |
+
except (PermissionError, OSError) as e:
|
| 585 |
+
# Fall back to local directory
|
| 586 |
+
local_path = Path("./data/life_coach_model")
|
| 587 |
+
logger.warning(f"/data directory not writable ({e}), using local directory: {local_path}")
|
| 588 |
+
self.model_save_path = local_path
|
| 589 |
+
else:
|
| 590 |
+
self.model_save_path = save_path
|
| 591 |
+
|
| 592 |
+
self.train_file = Path(train_file)
|
| 593 |
+
self.max_length = max_length
|
| 594 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 595 |
+
|
| 596 |
+
logger.info(f"Device: {self.device}")
|
| 597 |
+
logger.info(f"Model: {model_name}")
|
| 598 |
+
logger.info(f"Save path: {self.model_save_path}")
|
| 599 |
+
logger.info(f"Training file: {self.train_file}")
|
| 600 |
+
|
| 601 |
+
self.tokenizer = None
|
| 602 |
+
self.model = None
|
| 603 |
+
|
| 604 |
+
def load_tokenizer(self):
|
| 605 |
+
"""Carica il tokenizer da /data/hf_cache (persistente) o scaricalo una volta."""
|
| 606 |
+
logger.info("Loading tokenizer...")
|
| 607 |
+
|
| 608 |
+
cache_dir = "/data/hf_cache"
|
| 609 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 610 |
+
|
| 611 |
+
try:
|
| 612 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 613 |
+
self.model_name,
|
| 614 |
+
cache_dir=cache_dir,
|
| 615 |
+
local_files_only=False, # Permette download solo se non esiste
|
| 616 |
+
trust_remote_code=True,
|
| 617 |
+
use_fast=True
|
| 618 |
+
)
|
| 619 |
+
logger.info(f"Tokenizer caricato (cache: {cache_dir})")
|
| 620 |
+
except Exception as e:
|
| 621 |
+
logger.error(f"Errore critico nel caricamento tokenizer: {e}")
|
| 622 |
+
raise
|
| 623 |
+
def load_model(self, fine_tuned=True):
|
| 624 |
+
"""Load the fine-tuned model with safe settings for HF Spaces."""
|
| 625 |
+
logger.info(f"Loading {'fine-tuned' if fine_tuned else 'base'} model from {self.model_save_path}")
|
| 626 |
+
|
| 627 |
+
# Forza impostazioni sicure
|
| 628 |
+
import torch
|
| 629 |
+
from transformers import AutoModelForCausalLM
|
| 630 |
+
from peft import PeftModel
|
| 631 |
+
|
| 632 |
+
base_model_name = self.model_name
|
| 633 |
+
|
| 634 |
+
# Carica modello base con device_map e offload
|
| 635 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 636 |
+
base_model_name,
|
| 637 |
+
torch_dtype=torch.float16,
|
| 638 |
+
device_map="auto",
|
| 639 |
+
trust_remote_code=True,
|
| 640 |
+
low_cpu_mem_usage=True,
|
| 641 |
+
offload_folder="/tmp/offload", # Usa /tmp per offload
|
| 642 |
+
cache_dir="/data/hf_cache"
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
if fine_tuned:
|
| 646 |
+
logger.info(f"Loading adapter from {self.model_save_path}")
|
| 647 |
+
self.model = PeftModel.from_pretrained(
|
| 648 |
+
base_model,
|
| 649 |
+
self.model_save_path,
|
| 650 |
+
device_map="auto",
|
| 651 |
+
offload_folder="/tmp/offload",
|
| 652 |
+
torch_dtype=torch.float16
|
| 653 |
+
)
|
| 654 |
+
else:
|
| 655 |
+
self.model = base_model
|
| 656 |
+
|
| 657 |
+
self.model.eval()
|
| 658 |
+
logger.info("Model loaded successfully!")
|
| 659 |
+
|
| 660 |
+
def load_training_data(self, num_samples: Optional[int] = None) -> Dataset:
|
| 661 |
+
"""
|
| 662 |
+
Load training data from mixed datasets or JSONL file.
|
| 663 |
+
|
| 664 |
+
Args:
|
| 665 |
+
num_samples: Number of samples to load (None for 100,000 default)
|
| 666 |
+
|
| 667 |
+
Returns:
|
| 668 |
+
Dataset object
|
| 669 |
+
"""
|
| 670 |
+
# Try to load from mixed datasets first (new method)
|
| 671 |
+
# If train_file doesn't exist or is the old one, use mixed datasets
|
| 672 |
+
use_mixed_datasets = True
|
| 673 |
+
|
| 674 |
+
if self.train_file.exists():
|
| 675 |
+
# Check if it's the old single dataset file
|
| 676 |
+
if "cbt_life_coach" in str(self.train_file):
|
| 677 |
+
logger.info("Found old training file. Using new mixed datasets instead...")
|
| 678 |
+
use_mixed_datasets = True
|
| 679 |
+
else:
|
| 680 |
+
# It might be a cached mixed dataset
|
| 681 |
+
logger.info(f"Found training file at {self.train_file}")
|
| 682 |
+
use_mixed_datasets = False
|
| 683 |
+
|
| 684 |
+
if use_mixed_datasets:
|
| 685 |
+
# Load mixed datasets from Hugging Face
|
| 686 |
+
logger.info("Loading mixed datasets from Hugging Face...")
|
| 687 |
+
if num_samples is None:
|
| 688 |
+
num_samples = 100000 # Default to 100k samples
|
| 689 |
+
|
| 690 |
+
# Load mixed dataset (will use cache if available)
|
| 691 |
+
cache_file = f"mixed_lifecoach_dataset_{num_samples}.jsonl.gz" # Compressed format
|
| 692 |
+
data = load_mixed_dataset(
|
| 693 |
+
total_samples=num_samples,
|
| 694 |
+
cache_file=cache_file,
|
| 695 |
+
use_cache=True
|
| 696 |
+
)
|
| 697 |
+
else:
|
| 698 |
+
# Fall back to loading from JSONL file
|
| 699 |
+
logger.info(f"Loading training data from {self.train_file}")
|
| 700 |
+
data = []
|
| 701 |
+
with open(self.train_file, 'r', encoding='utf-8') as f:
|
| 702 |
+
for i, line in enumerate(f):
|
| 703 |
+
if num_samples and i >= num_samples:
|
| 704 |
+
break
|
| 705 |
+
try:
|
| 706 |
+
data.append(json.loads(line.strip()))
|
| 707 |
+
except json.JSONDecodeError:
|
| 708 |
+
logger.warning(f"Skipping invalid JSON at line {i+1}")
|
| 709 |
+
|
| 710 |
+
logger.info(f"Loaded {len(data)} training examples")
|
| 711 |
+
|
| 712 |
+
# Convert to Hugging Face Dataset
|
| 713 |
+
dataset = Dataset.from_list(data)
|
| 714 |
+
|
| 715 |
+
# Preprocess for Phi-4 format
|
| 716 |
+
logger.info("Preprocessing data for Phi-4 format...")
|
| 717 |
+
dataset = dataset.map(
|
| 718 |
+
self._preprocess_function,
|
| 719 |
+
batched=True,
|
| 720 |
+
remove_columns=dataset.column_names,
|
| 721 |
+
desc="Tokenizing"
|
| 722 |
+
)
|
| 723 |
+
|
| 724 |
+
return dataset
|
| 725 |
+
|
| 726 |
+
def _preprocess_function(self, examples):
|
| 727 |
+
"""
|
| 728 |
+
Preprocess data into Phi-4 chat format.
|
| 729 |
+
|
| 730 |
+
Phi-4 uses:
|
| 731 |
+
<|system|>
|
| 732 |
+
{system message}<|end|>
|
| 733 |
+
<|user|>
|
| 734 |
+
{user message}<|end|>
|
| 735 |
+
<|assistant|>
|
| 736 |
+
{assistant response}<|end|>
|
| 737 |
+
"""
|
| 738 |
+
texts = []
|
| 739 |
+
|
| 740 |
+
# Handle both 'conversations' (our format) and 'messages' (standard format)
|
| 741 |
+
conversations_key = 'conversations' if 'conversations' in examples else 'messages'
|
| 742 |
+
|
| 743 |
+
for conversation in examples[conversations_key]:
|
| 744 |
+
text = ""
|
| 745 |
+
for message in conversation:
|
| 746 |
+
# Handle both 'from'/'value' and 'role'/'content' formats
|
| 747 |
+
if 'from' in message:
|
| 748 |
+
role = message['from']
|
| 749 |
+
content = message['value']
|
| 750 |
+
else:
|
| 751 |
+
role = message['role']
|
| 752 |
+
content = message['content']
|
| 753 |
+
|
| 754 |
+
# Convert to Phi-4 format
|
| 755 |
+
if role == 'system':
|
| 756 |
+
text += f"<|system|>\n{content}<|end|>\n"
|
| 757 |
+
elif role == 'user':
|
| 758 |
+
text += f"<|user|>\n{content}<|end|>\n"
|
| 759 |
+
elif role == 'assistant':
|
| 760 |
+
text += f"<|assistant|>\n{content}<|end|>\n"
|
| 761 |
+
|
| 762 |
+
texts.append(text)
|
| 763 |
+
|
| 764 |
+
# Tokenize with dynamic padding (like quantum server)
|
| 765 |
+
# Don't pad here - let DataCollatorForSeq2Seq handle it dynamically per batch
|
| 766 |
+
model_inputs = self.tokenizer(
|
| 767 |
+
texts,
|
| 768 |
+
max_length=self.max_length,
|
| 769 |
+
truncation=True,
|
| 770 |
+
padding=False, # Dynamic padding - saves massive memory!
|
| 771 |
+
return_tensors=None # Don't convert to tensors yet
|
| 772 |
+
)
|
| 773 |
+
|
| 774 |
+
# Set labels (for causal language modeling, labels = input_ids)
|
| 775 |
+
# Note: .copy() instead of .clone() since we're not using tensors yet
|
| 776 |
+
model_inputs["labels"] = model_inputs["input_ids"].copy()
|
| 777 |
+
|
| 778 |
+
return model_inputs
|
| 779 |
+
|
| 780 |
+
def setup_lora(self):
|
| 781 |
+
"""Setup LoRA (Low-Rank Adaptation) for efficient fine-tuning."""
|
| 782 |
+
logger.info("Setting up LoRA adapters...")
|
| 783 |
+
|
| 784 |
+
# Prepare model for k-bit training (critical for load_in_8bit=True)
|
| 785 |
+
logger.info("Preparing model for 8-bit training...")
|
| 786 |
+
self.model = prepare_model_for_kbit_training(self.model)
|
| 787 |
+
|
| 788 |
+
# Enable gradient checkpointing to save GPU memory
|
| 789 |
+
# This reduces memory usage by 20-30 GB with minimal performance impact
|
| 790 |
+
if hasattr(self.model, 'gradient_checkpointing_enable'):
|
| 791 |
+
self.model.gradient_checkpointing_enable()
|
| 792 |
+
logger.info("β Gradient checkpointing enabled (saves 20-30 GB GPU memory)")
|
| 793 |
+
|
| 794 |
+
# LoRA configuration
|
| 795 |
+
lora_config = LoraConfig(
|
| 796 |
+
task_type=TaskType.CAUSAL_LM,
|
| 797 |
+
r=16, # Rank
|
| 798 |
+
lora_alpha=32,
|
| 799 |
+
lora_dropout=0.1,
|
| 800 |
+
bias="none",
|
| 801 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"] # Attention layers
|
| 802 |
+
)
|
| 803 |
+
|
| 804 |
+
# Apply LoRA
|
| 805 |
+
self.model = get_peft_model(self.model, lora_config)
|
| 806 |
+
|
| 807 |
+
# Print trainable parameters
|
| 808 |
+
trainable_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
|
| 809 |
+
total_params = sum(p.numel() for p in self.model.parameters())
|
| 810 |
+
|
| 811 |
+
logger.info(f"Trainable parameters: {trainable_params:,} / {total_params:,} "
|
| 812 |
+
f"({100 * trainable_params / total_params:.2f}%)")
|
| 813 |
+
|
| 814 |
+
def fine_tune(
|
| 815 |
+
self,
|
| 816 |
+
num_samples: Optional[int] = 5000,
|
| 817 |
+
epochs: int = 3,
|
| 818 |
+
batch_size: int = 8,
|
| 819 |
+
learning_rate: float = 5e-5,
|
| 820 |
+
gradient_accumulation_steps: int = 2
|
| 821 |
+
):
|
| 822 |
+
"""
|
| 823 |
+
Fine-tune the model on life coaching data.
|
| 824 |
+
|
| 825 |
+
Args:
|
| 826 |
+
num_samples: Number of training samples (None for all)
|
| 827 |
+
epochs: Number of training epochs
|
| 828 |
+
batch_size: Training batch size
|
| 829 |
+
learning_rate: Learning rate
|
| 830 |
+
gradient_accumulation_steps: Gradient accumulation steps (for memory efficiency)
|
| 831 |
+
"""
|
| 832 |
+
logger.info("=" * 80)
|
| 833 |
+
logger.info("STARTING FINE-TUNING")
|
| 834 |
+
logger.info("=" * 80)
|
| 835 |
+
|
| 836 |
+
# Load data
|
| 837 |
+
dataset = self.load_training_data(num_samples)
|
| 838 |
+
|
| 839 |
+
# Setup LoRA
|
| 840 |
+
self.setup_lora()
|
| 841 |
+
|
| 842 |
+
# Training arguments
|
| 843 |
+
training_args = TrainingArguments(
|
| 844 |
+
output_dir="./training_output",
|
| 845 |
+
num_train_epochs=epochs,
|
| 846 |
+
per_device_train_batch_size=batch_size,
|
| 847 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 848 |
+
learning_rate=learning_rate,
|
| 849 |
+
fp16=True, # Mixed precision training
|
| 850 |
+
logging_steps=10,
|
| 851 |
+
save_strategy="epoch",
|
| 852 |
+
save_total_limit=2,
|
| 853 |
+
warmup_steps=100,
|
| 854 |
+
weight_decay=0.01,
|
| 855 |
+
report_to="none", # Disable wandb/tensorboard
|
| 856 |
+
)
|
| 857 |
+
|
| 858 |
+
# Data collator
|
| 859 |
+
data_collator = DataCollatorForSeq2Seq(
|
| 860 |
+
tokenizer=self.tokenizer,
|
| 861 |
+
model=self.model,
|
| 862 |
+
padding=True
|
| 863 |
+
)
|
| 864 |
+
|
| 865 |
+
# Trainer
|
| 866 |
+
trainer = Trainer(
|
| 867 |
+
model=self.model,
|
| 868 |
+
args=training_args,
|
| 869 |
+
train_dataset=dataset,
|
| 870 |
+
data_collator=data_collator,
|
| 871 |
+
)
|
| 872 |
+
|
| 873 |
+
# Train
|
| 874 |
+
logger.info("Training started...")
|
| 875 |
+
trainer.train()
|
| 876 |
+
|
| 877 |
+
logger.info("=" * 80)
|
| 878 |
+
logger.info("TRAINING COMPLETED")
|
| 879 |
+
logger.info("=" * 80)
|
| 880 |
+
|
| 881 |
+
# Save model
|
| 882 |
+
self.save_model()
|
| 883 |
+
|
| 884 |
+
def save_model(self):
|
| 885 |
+
"""Save the fine-tuned model to disk."""
|
| 886 |
+
logger.info(f"Saving model to {self.model_save_path}")
|
| 887 |
+
|
| 888 |
+
self.model_save_path.mkdir(parents=True, exist_ok=True)
|
| 889 |
+
|
| 890 |
+
# Save model and tokenizer
|
| 891 |
+
self.model.save_pretrained(str(self.model_save_path))
|
| 892 |
+
self.tokenizer.save_pretrained(str(self.model_save_path))
|
| 893 |
+
|
| 894 |
+
logger.info("Model saved successfully")
|
| 895 |
+
|
| 896 |
+
def generate_response(self, prompt: str, max_new_tokens: int = 128, conversation_history: list = None) -> str:
|
| 897 |
+
"""
|
| 898 |
+
Generate a response to a user prompt.
|
| 899 |
+
|
| 900 |
+
Args:
|
| 901 |
+
prompt: User's input message
|
| 902 |
+
max_new_tokens: Maximum tokens to generate
|
| 903 |
+
conversation_history: List of previous messages for context
|
| 904 |
+
|
| 905 |
+
Returns:
|
| 906 |
+
Generated response
|
| 907 |
+
"""
|
| 908 |
+
# Build full conversation context with system prompt
|
| 909 |
+
formatted_prompt = ""
|
| 910 |
+
|
| 911 |
+
# Add system prompt to guide the model's behavior
|
| 912 |
+
system_prompt = """You are Robert, a friendly and experienced life coach. Here's your background:
|
| 913 |
+
|
| 914 |
+
About You:
|
| 915 |
+
- Name: Robert (Bob to friends)
|
| 916 |
+
- Age: 42 years old
|
| 917 |
+
- Experience: 15 years as a certified life coach and motivational speaker
|
| 918 |
+
- Education: Master's degree in Psychology from UC Berkeley
|
| 919 |
+
- Specialties: Personal growth, career transitions, work-life balance, goal setting, stress management
|
| 920 |
+
- Personal: Married with two kids, enjoy hiking and meditation in your free time
|
| 921 |
+
- Approach: Warm, empathetic, practical, and solution-focused
|
| 922 |
+
|
| 923 |
+
Your Coaching Style:
|
| 924 |
+
- Respond ONLY to what the user actually tells you - never make assumptions about their problems
|
| 925 |
+
- Start conversations in a welcoming, open manner
|
| 926 |
+
- Ask clarifying questions to understand their situation better
|
| 927 |
+
- Provide practical, actionable advice based on what they share
|
| 928 |
+
- Be encouraging and positive, but also honest and realistic
|
| 929 |
+
- Keep responses concise and focused (2-4 sentences usually)
|
| 930 |
+
- Share brief personal insights when relevant, but keep the focus on the client
|
| 931 |
+
|
| 932 |
+
Important: Never assume clients have problems they haven't mentioned. Let them guide the conversation and share what's on their mind."""
|
| 933 |
+
|
| 934 |
+
formatted_prompt += f"<|system|>\n{system_prompt}<|end|>\n"
|
| 935 |
+
|
| 936 |
+
# Add conversation history if provided
|
| 937 |
+
if conversation_history:
|
| 938 |
+
for msg in conversation_history:
|
| 939 |
+
if msg["role"] == "user":
|
| 940 |
+
formatted_prompt += f"<|user|>\n{msg['content']}<|end|>\n"
|
| 941 |
+
elif msg["role"] == "assistant":
|
| 942 |
+
formatted_prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
|
| 943 |
+
|
| 944 |
+
# Add current prompt
|
| 945 |
+
formatted_prompt += f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"
|
| 946 |
+
|
| 947 |
+
# DEBUG: Print the full prompt being sent to the model
|
| 948 |
+
logger.info("=" * 80)
|
| 949 |
+
logger.info("FULL PROMPT SENT TO MODEL:")
|
| 950 |
+
logger.info(formatted_prompt)
|
| 951 |
+
logger.info("=" * 80)
|
| 952 |
+
|
| 953 |
+
# Tokenize
|
| 954 |
+
inputs = self.tokenizer(
|
| 955 |
+
formatted_prompt,
|
| 956 |
+
return_tensors="pt",
|
| 957 |
+
truncation=True,
|
| 958 |
+
max_length=self.max_length
|
| 959 |
+
).to(self.device)
|
| 960 |
+
|
| 961 |
+
# Get input length to extract only new tokens
|
| 962 |
+
input_length = inputs['input_ids'].shape[1]
|
| 963 |
+
|
| 964 |
+
# Get the token ID for <|end|> to use as a stopping token
|
| 965 |
+
end_token_id = self.tokenizer.convert_tokens_to_ids("<|end|>")
|
| 966 |
+
|
| 967 |
+
# Build list of EOS token IDs (stop generation at <|end|> or EOS)
|
| 968 |
+
eos_token_ids = [self.tokenizer.eos_token_id]
|
| 969 |
+
if end_token_id is not None and end_token_id != self.tokenizer.unk_token_id:
|
| 970 |
+
eos_token_ids.append(end_token_id)
|
| 971 |
+
|
| 972 |
+
# Generate
|
| 973 |
+
with torch.no_grad():
|
| 974 |
+
outputs = self.model.generate(
|
| 975 |
+
**inputs,
|
| 976 |
+
max_new_tokens=max_new_tokens,
|
| 977 |
+
temperature=0.7, # Balanced - coherent but still creative
|
| 978 |
+
top_p=0.9, # Standard setting for focused responses
|
| 979 |
+
top_k=50, # Add top-k sampling
|
| 980 |
+
do_sample=True,
|
| 981 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 982 |
+
eos_token_id=eos_token_ids, # Stop at <|end|> or EOS
|
| 983 |
+
repetition_penalty=1.15 # Stronger penalty to prevent repetition
|
| 984 |
+
)
|
| 985 |
+
|
| 986 |
+
# Decode ONLY the newly generated tokens (not the input)
|
| 987 |
+
generated_tokens = outputs[0][input_length:]
|
| 988 |
+
|
| 989 |
+
# Decode without skipping special tokens first to find the end marker
|
| 990 |
+
response_with_tokens = self.tokenizer.decode(generated_tokens, skip_special_tokens=False)
|
| 991 |
+
|
| 992 |
+
# Extract only up to the first <|end|> token (model may generate multi-turn conversations)
|
| 993 |
+
if "<|end|>" in response_with_tokens:
|
| 994 |
+
response_text = response_with_tokens.split("<|end|>")[0]
|
| 995 |
+
else:
|
| 996 |
+
response_text = response_with_tokens
|
| 997 |
+
|
| 998 |
+
# Clean up any remaining special tokens
|
| 999 |
+
response_text = response_text.replace("<|assistant|>", "").replace("<|user|>", "").replace("<|system|>", "")
|
| 1000 |
+
|
| 1001 |
+
# Remove any remaining special tokens using the tokenizer
|
| 1002 |
+
response_text = response_text.strip()
|
| 1003 |
+
|
| 1004 |
+
return response_text
|
| 1005 |
+
|
| 1006 |
+
def interactive_chat(self):
|
| 1007 |
+
"""Start an interactive chat session."""
|
| 1008 |
+
logger.info("=" * 80)
|
| 1009 |
+
logger.info("LIFE COACH V1 - Interactive Chat Session")
|
| 1010 |
+
logger.info("=" * 80)
|
| 1011 |
+
print("\nWelcome to Life Coach v1!")
|
| 1012 |
+
print("I'm here to help you with life coaching, goal setting, motivation, and personal growth.")
|
| 1013 |
+
print("\nCommands:")
|
| 1014 |
+
print(" - Type your question or concern to get coaching advice")
|
| 1015 |
+
print(" - Type 'quit' or 'exit' to end the session")
|
| 1016 |
+
print(" - Type 'clear' to clear conversation history")
|
| 1017 |
+
print("=" * 80)
|
| 1018 |
+
print()
|
| 1019 |
+
|
| 1020 |
+
conversation_history = []
|
| 1021 |
+
|
| 1022 |
+
while True:
|
| 1023 |
+
try:
|
| 1024 |
+
# Get user input
|
| 1025 |
+
user_input = input("\nπ§ You: ").strip()
|
| 1026 |
+
|
| 1027 |
+
if not user_input:
|
| 1028 |
+
continue
|
| 1029 |
+
|
| 1030 |
+
# Check for exit commands
|
| 1031 |
+
if user_input.lower() in ['quit', 'exit', 'q']:
|
| 1032 |
+
print("\nπ Thank you for using Life Coach v1. Take care!")
|
| 1033 |
+
break
|
| 1034 |
+
|
| 1035 |
+
# Check for clear command
|
| 1036 |
+
if user_input.lower() == 'clear':
|
| 1037 |
+
conversation_history = []
|
| 1038 |
+
print("β
Conversation history cleared.")
|
| 1039 |
+
continue
|
| 1040 |
+
|
| 1041 |
+
# Generate response with conversation context
|
| 1042 |
+
print("\nπ€ Life Coach: ", end="", flush=True)
|
| 1043 |
+
response = self.generate_response(user_input, conversation_history=conversation_history)
|
| 1044 |
+
print(response)
|
| 1045 |
+
|
| 1046 |
+
# Update conversation history
|
| 1047 |
+
conversation_history.append({
|
| 1048 |
+
"role": "user",
|
| 1049 |
+
"content": user_input
|
| 1050 |
+
})
|
| 1051 |
+
conversation_history.append({
|
| 1052 |
+
"role": "assistant",
|
| 1053 |
+
"content": response
|
| 1054 |
+
})
|
| 1055 |
+
|
| 1056 |
+
except KeyboardInterrupt:
|
| 1057 |
+
print("\n\nπ Session interrupted. Goodbye!")
|
| 1058 |
+
break
|
| 1059 |
+
except Exception as e:
|
| 1060 |
+
logger.error(f"Error during chat: {e}")
|
| 1061 |
+
print(f"\nβ Error: {e}")
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
def main():
|
| 1065 |
+
"""Main entry point."""
|
| 1066 |
+
parser = argparse.ArgumentParser(
|
| 1067 |
+
description="Life Coach v1 - Phi-4 based life coaching assistant"
|
| 1068 |
+
)
|
| 1069 |
+
|
| 1070 |
+
parser.add_argument(
|
| 1071 |
+
"--mode",
|
| 1072 |
+
type=str,
|
| 1073 |
+
choices=["train", "chat", "both"],
|
| 1074 |
+
default="both",
|
| 1075 |
+
help="Mode: train (fine-tune only), chat (chat only), both (train then chat)"
|
| 1076 |
+
)
|
| 1077 |
+
|
| 1078 |
+
parser.add_argument(
|
| 1079 |
+
"--model-name",
|
| 1080 |
+
type=str,
|
| 1081 |
+
default="microsoft/Phi-4",
|
| 1082 |
+
help="Hugging Face model name"
|
| 1083 |
+
)
|
| 1084 |
+
|
| 1085 |
+
parser.add_argument(
|
| 1086 |
+
"--model-path",
|
| 1087 |
+
type=str,
|
| 1088 |
+
default="/data/life_coach_model",
|
| 1089 |
+
help="Path to save/load fine-tuned model"
|
| 1090 |
+
)
|
| 1091 |
+
|
| 1092 |
+
parser.add_argument(
|
| 1093 |
+
"--train-file",
|
| 1094 |
+
type=str,
|
| 1095 |
+
default="cbt_life_coach_improved_50000.jsonl",
|
| 1096 |
+
help="Path to training data file (JSONL format)"
|
| 1097 |
+
)
|
| 1098 |
+
|
| 1099 |
+
parser.add_argument(
|
| 1100 |
+
"--num-samples",
|
| 1101 |
+
type=int,
|
| 1102 |
+
default=-1,
|
| 1103 |
+
help="Number of training samples (default: -1 for all 100,000 from mixed datasets)"
|
| 1104 |
+
)
|
| 1105 |
+
|
| 1106 |
+
parser.add_argument(
|
| 1107 |
+
"--epochs",
|
| 1108 |
+
type=int,
|
| 1109 |
+
default=3,
|
| 1110 |
+
help="Number of training epochs"
|
| 1111 |
+
)
|
| 1112 |
+
|
| 1113 |
+
parser.add_argument(
|
| 1114 |
+
"--batch-size",
|
| 1115 |
+
type=int,
|
| 1116 |
+
default=4,
|
| 1117 |
+
help="Training batch size (default: 4 for memory safety)"
|
| 1118 |
+
)
|
| 1119 |
+
|
| 1120 |
+
parser.add_argument(
|
| 1121 |
+
"--learning-rate",
|
| 1122 |
+
type=float,
|
| 1123 |
+
default=5e-5,
|
| 1124 |
+
help="Learning rate (default: 5e-5, matching quantum server)"
|
| 1125 |
+
)
|
| 1126 |
+
|
| 1127 |
+
parser.add_argument(
|
| 1128 |
+
"--gradient-accumulation",
|
| 1129 |
+
type=int,
|
| 1130 |
+
default=4,
|
| 1131 |
+
help="Gradient accumulation steps (default: 4, effective batch=16)"
|
| 1132 |
+
)
|
| 1133 |
+
|
| 1134 |
+
parser.add_argument(
|
| 1135 |
+
"--force-retrain",
|
| 1136 |
+
action="store_true",
|
| 1137 |
+
help="Force retraining even if fine-tuned model exists"
|
| 1138 |
+
)
|
| 1139 |
+
|
| 1140 |
+
args = parser.parse_args()
|
| 1141 |
+
|
| 1142 |
+
# Clean up GPU memory before starting
|
| 1143 |
+
cleanup_gpu_memory()
|
| 1144 |
+
|
| 1145 |
+
# Initialize model
|
| 1146 |
+
coach = LifeCoachModel(
|
| 1147 |
+
model_name=args.model_name,
|
| 1148 |
+
model_save_path=args.model_path,
|
| 1149 |
+
train_file=args.train_file
|
| 1150 |
+
)
|
| 1151 |
+
|
| 1152 |
+
# Load tokenizer
|
| 1153 |
+
coach.load_tokenizer()
|
| 1154 |
+
|
| 1155 |
+
# Check if fine-tuned model already exists
|
| 1156 |
+
model_exists = coach.model_save_path.exists() and (coach.model_save_path / "adapter_model.safetensors").exists()
|
| 1157 |
+
|
| 1158 |
+
# Training mode
|
| 1159 |
+
if args.mode in ["train", "both"]:
|
| 1160 |
+
# Check if we should skip training
|
| 1161 |
+
if model_exists and not args.force_retrain:
|
| 1162 |
+
logger.info("=" * 80)
|
| 1163 |
+
logger.info("FINE-TUNED MODEL ALREADY EXISTS")
|
| 1164 |
+
logger.info("=" * 80)
|
| 1165 |
+
logger.info(f"Found existing model at: {coach.model_save_path}")
|
| 1166 |
+
logger.info("Skipping training. Loading existing model...")
|
| 1167 |
+
logger.info("(Use --force-retrain to retrain from scratch)")
|
| 1168 |
+
logger.info("=" * 80)
|
| 1169 |
+
|
| 1170 |
+
# Load the existing fine-tuned model
|
| 1171 |
+
coach.load_model(fine_tuned=True)
|
| 1172 |
+
else:
|
| 1173 |
+
if args.force_retrain and model_exists:
|
| 1174 |
+
logger.info("=" * 80)
|
| 1175 |
+
logger.info("FORCING RETRAINING (--force-retrain flag set)")
|
| 1176 |
+
logger.info("=" * 80)
|
| 1177 |
+
|
| 1178 |
+
# Load base model for training
|
| 1179 |
+
coach.load_model(fine_tuned=False)
|
| 1180 |
+
|
| 1181 |
+
# Fine-tune
|
| 1182 |
+
num_samples = None if args.num_samples == -1 else args.num_samples
|
| 1183 |
+
coach.fine_tune(
|
| 1184 |
+
num_samples=num_samples,
|
| 1185 |
+
epochs=args.epochs,
|
| 1186 |
+
batch_size=args.batch_size,
|
| 1187 |
+
learning_rate=args.learning_rate,
|
| 1188 |
+
gradient_accumulation_steps=args.gradient_accumulation
|
| 1189 |
+
)
|
| 1190 |
+
|
| 1191 |
+
# For "both" mode, reload the fine-tuned model for chat
|
| 1192 |
+
if args.mode == "both":
|
| 1193 |
+
logger.info("Reloading fine-tuned model for chat...")
|
| 1194 |
+
coach.load_model(fine_tuned=True)
|
| 1195 |
+
|
| 1196 |
+
# If only training mode, exit
|
| 1197 |
+
if args.mode == "train":
|
| 1198 |
+
logger.info("Training complete. Use --mode chat to start chatting.")
|
| 1199 |
+
return
|
| 1200 |
+
|
| 1201 |
+
# Chat mode
|
| 1202 |
+
elif args.mode == "chat":
|
| 1203 |
+
if not model_exists:
|
| 1204 |
+
logger.error("=" * 80)
|
| 1205 |
+
logger.error("ERROR: No fine-tuned model found!")
|
| 1206 |
+
logger.error("=" * 80)
|
| 1207 |
+
logger.error(f"Expected location: {coach.model_save_path}")
|
| 1208 |
+
logger.error("Please train the model first using:")
|
| 1209 |
+
logger.error(" python3 life_coach_v1.py --mode train")
|
| 1210 |
+
logger.error("=" * 80)
|
| 1211 |
+
return
|
| 1212 |
+
|
| 1213 |
+
# Load fine-tuned model
|
| 1214 |
+
logger.info(f"Loading fine-tuned model from {coach.model_save_path}")
|
| 1215 |
+
coach.load_model(fine_tuned=True)
|
| 1216 |
+
|
| 1217 |
+
# Start interactive chat
|
| 1218 |
+
coach.interactive_chat()
|
| 1219 |
+
|
| 1220 |
+
|
| 1221 |
+
if __name__ == "__main__":
|
| 1222 |
+
main()
|