Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from statistics import mean
|
| 4 |
+
from typing import Iterator, Union, Any
|
| 5 |
+
import fasttext
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
from httpx import Client, Timeout
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
| 10 |
+
from huggingface_hub.utils import logging
|
| 11 |
+
from toolz import concat, groupby, valmap
|
| 12 |
+
from fastapi import FastAPI
|
| 13 |
+
from httpx import AsyncClient
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
|
| 16 |
+
app = FastAPI()
|
| 17 |
+
logger = logging.get_logger(__name__)
|
| 18 |
+
load_dotenv()
|
| 19 |
+
|
| 20 |
+
DEFAULT_FAST_TEXT_MODEL = "laurievb/OpenLID"
|
| 21 |
+
|
| 22 |
+
def load_model(repo_id: str) -> fasttext.FastText._FastText:
|
| 23 |
+
model_path = hf_hub_download(repo_id, filename="model.bin")
|
| 24 |
+
return fasttext.load_model(model_path)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def yield_clean_rows(rows: Union[list[str], str], min_length: int = 3) -> Iterator[str]:
|
| 28 |
+
for row in rows:
|
| 29 |
+
if isinstance(row, str):
|
| 30 |
+
# split on lines and remove empty lines
|
| 31 |
+
line = row.split("\n")
|
| 32 |
+
for line in line:
|
| 33 |
+
if line:
|
| 34 |
+
yield line
|
| 35 |
+
elif isinstance(row, list):
|
| 36 |
+
try:
|
| 37 |
+
line = " ".join(row)
|
| 38 |
+
if len(line) < min_length:
|
| 39 |
+
continue
|
| 40 |
+
else:
|
| 41 |
+
yield line
|
| 42 |
+
except TypeError:
|
| 43 |
+
continue
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
FASTTEXT_PREFIX_LENGTH = 9 # fasttext labels are formatted like "__label__eng_Latn"
|
| 47 |
+
|
| 48 |
+
# model = load_model(DEFAULT_FAST_TEXT_MODEL)
|
| 49 |
+
Path("code/models").mkdir(parents=True, exist_ok=True)
|
| 50 |
+
model = fasttext.load_model(
|
| 51 |
+
hf_hub_download(
|
| 52 |
+
"facebook/fasttext-language-identification",
|
| 53 |
+
"model.bin",
|
| 54 |
+
cache_dir="code/models",
|
| 55 |
+
local_dir="code/models",
|
| 56 |
+
local_dir_use_symlinks=False,
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def model_predict(inputs: str, k=1) -> list[dict[str, float]]:
|
| 62 |
+
predictions = model.predict(inputs, k=k)
|
| 63 |
+
return [
|
| 64 |
+
{"label": label[FASTTEXT_PREFIX_LENGTH:], "score": prob}
|
| 65 |
+
for label, prob in zip(predictions[0], predictions[1])
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def get_label(x):
|
| 70 |
+
return x.get("label")
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def get_mean_score(preds):
|
| 74 |
+
return mean([pred.get("score") for pred in preds])
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def filter_by_frequency(counts_dict: dict, threshold_percent: float = 0.2):
|
| 78 |
+
"""Filter a dict to include items whose value is above `threshold_percent`"""
|
| 79 |
+
total = sum(counts_dict.values())
|
| 80 |
+
threshold = total * threshold_percent
|
| 81 |
+
return {k for k, v in counts_dict.items() if v >= threshold}
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def predict_rows(rows, target_column, language_threshold_percent=0.2):
|
| 85 |
+
rows = (row.get(target_column) for row in rows)
|
| 86 |
+
rows = (row for row in rows if row is not None)
|
| 87 |
+
rows = list(yield_clean_rows(rows))
|
| 88 |
+
predictions = [model_predict(row) for row in rows]
|
| 89 |
+
predictions = [pred for pred in predictions if pred is not None]
|
| 90 |
+
predictions = list(concat(predictions))
|
| 91 |
+
predictions_by_lang = groupby(get_label, predictions)
|
| 92 |
+
langues_counts = valmap(len, predictions_by_lang)
|
| 93 |
+
keys_to_keep = filter_by_frequency(
|
| 94 |
+
langues_counts, threshold_percent=language_threshold_percent
|
| 95 |
+
)
|
| 96 |
+
filtered_dict = {k: v for k, v in predictions_by_lang.items() if k in keys_to_keep}
|
| 97 |
+
return {
|
| 98 |
+
"predictions": dict(valmap(get_mean_score, filtered_dict)),
|
| 99 |
+
"pred": predictions,
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
@app.get("/items/{hub_id}")
|
| 104 |
+
async def predict_language(
|
| 105 |
+
hub_id: str,
|
| 106 |
+
config: str | None = None,
|
| 107 |
+
split: str | None = None,
|
| 108 |
+
max_request_calls: int = 10,
|
| 109 |
+
number_of_rows: int = 1000,
|
| 110 |
+
) -> dict[Any, Any]:
|
| 111 |
+
is_valid = datasets_server_valid_rows(hub_id)
|
| 112 |
+
if not is_valid:
|
| 113 |
+
gr.Error(f"Dataset {hub_id} is not accessible via the datasets server.")
|
| 114 |
+
if not config:
|
| 115 |
+
config, split = await get_first_config_and_split_name(hub_id)
|
| 116 |
+
info = await get_dataset_info(hub_id, config)
|
| 117 |
+
if info is None:
|
| 118 |
+
gr.Error(f"Dataset {hub_id} is not accessible via the datasets server.")
|
| 119 |
+
if dataset_info := info.get("dataset_info"):
|
| 120 |
+
total_rows_for_split = dataset_info.get("splits").get(split).get("num_examples")
|
| 121 |
+
features = dataset_info.get("features")
|
| 122 |
+
column_names = set(features.keys())
|
| 123 |
+
logger.info(f"Column names: {column_names}")
|
| 124 |
+
if not set(column_names).intersection(TARGET_COLUMN_NAMES):
|
| 125 |
+
raise gr.Error(
|
| 126 |
+
f"Dataset {hub_id} {column_names} is not in any of the target columns {TARGET_COLUMN_NAMES}"
|
| 127 |
+
)
|
| 128 |
+
for column in TARGET_COLUMN_NAMES:
|
| 129 |
+
if column in column_names:
|
| 130 |
+
target_column = column
|
| 131 |
+
logger.info(f"Using column {target_column} for language detection")
|
| 132 |
+
break
|
| 133 |
+
random_rows = await get_random_rows(
|
| 134 |
+
hub_id,
|
| 135 |
+
total_rows_for_split,
|
| 136 |
+
number_of_rows,
|
| 137 |
+
max_request_calls,
|
| 138 |
+
config,
|
| 139 |
+
split,
|
| 140 |
+
)
|
| 141 |
+
logger.info(f"Predicting language for {len(random_rows)} rows")
|
| 142 |
+
predictions = predict_rows(random_rows, target_column)
|
| 143 |
+
predictions["hub_id"] = hub_id
|
| 144 |
+
predictions["config"] = config
|
| 145 |
+
predictions["split"] = split
|
| 146 |
+
return predictions
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
@app.get("/")
|
| 150 |
+
|
| 151 |
+
app_title = "Language Detection"
|
| 152 |
+
inputs = [
|
| 153 |
+
gr.Textbox(
|
| 154 |
+
None,
|
| 155 |
+
label="enter content",
|
| 156 |
+
),
|
| 157 |
+
gr.Textbox(None, label="split"),
|
| 158 |
+
]
|
| 159 |
+
interface = gr.Interface(
|
| 160 |
+
predict_language,
|
| 161 |
+
inputs=inputs,
|
| 162 |
+
outputs="json",
|
| 163 |
+
title=app_title,
|
| 164 |
+
# article=app_description,
|
| 165 |
+
)
|
| 166 |
+
interface.queue()
|
| 167 |
+
interface.launch()
|