Can select and visualizing results from cropping, stretching or tiling images
Browse files
app.py
CHANGED
|
@@ -18,12 +18,43 @@ from CLIP_Explainability.vit_cam import (
|
|
| 18 |
vit_perword_relevance,
|
| 19 |
) # , interpret_vit_overlapped
|
| 20 |
|
| 21 |
-
MAX_IMG_WIDTH =
|
| 22 |
MAX_IMG_HEIGHT = 800
|
| 23 |
|
| 24 |
st.set_page_config(layout="wide")
|
| 25 |
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
def init():
|
| 28 |
st.session_state.current_page = 1
|
| 29 |
|
|
@@ -34,74 +65,51 @@ def init():
|
|
| 34 |
ml_model_name = "M-CLIP/XLM-Roberta-Large-Vit-B-16Plus"
|
| 35 |
ml_model_path = "./models/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"
|
| 36 |
|
| 37 |
-
st.
|
| 38 |
-
|
| 39 |
-
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
|
|
|
|
| 62 |
st.session_state.search_image_ids = []
|
| 63 |
st.session_state.search_image_scores = {}
|
| 64 |
st.session_state.activations_image = None
|
| 65 |
st.session_state.text_table_df = None
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
st.session_state.images_info.set_index("filename", inplace=True)
|
| 70 |
-
|
| 71 |
-
st.session_state.image_ids = list(
|
| 72 |
-
open("./images_list.txt", "r", encoding="utf-8").read().strip().split("\n")
|
| 73 |
-
)
|
| 74 |
-
|
| 75 |
-
# Load the image feature vectors
|
| 76 |
-
# ml_image_features = np.load("./multilingual_features.npy")
|
| 77 |
-
# ja_image_features = np.load("./hakuhodo_features.npy")
|
| 78 |
-
ml_image_features = np.load("./resized_ml_features.npy")
|
| 79 |
-
ja_image_features = np.load("./resized_ja_features.npy")
|
| 80 |
-
# ml_image_features = np.load("./tiled_ml_features.npy")
|
| 81 |
-
# ja_image_features = np.load("./tiled_ja_features.npy")
|
| 82 |
-
|
| 83 |
-
# Convert features to Tensors: Float32 on CPU and Float16 on GPU
|
| 84 |
-
if device == "cpu":
|
| 85 |
-
ml_image_features = torch.from_numpy(ml_image_features).float().to(device)
|
| 86 |
-
ja_image_features = torch.from_numpy(ja_image_features).float().to(device)
|
| 87 |
-
else:
|
| 88 |
-
ml_image_features = torch.from_numpy(ml_image_features).to(device)
|
| 89 |
-
ja_image_features = torch.from_numpy(ja_image_features).to(device)
|
| 90 |
-
|
| 91 |
-
st.session_state.ml_image_features = ml_image_features / ml_image_features.norm(
|
| 92 |
-
dim=-1, keepdim=True
|
| 93 |
-
)
|
| 94 |
-
st.session_state.ja_image_features = ja_image_features / ja_image_features.norm(
|
| 95 |
-
dim=-1, keepdim=True
|
| 96 |
-
)
|
| 97 |
|
| 98 |
|
| 99 |
-
if
|
| 100 |
-
|
| 101 |
-
or "ja_image_features" not in st.session_state
|
| 102 |
-
):
|
| 103 |
-
with st.spinner("Loading models and data, please wait..."):
|
| 104 |
-
init()
|
| 105 |
|
| 106 |
|
| 107 |
# The `encode_search_query` function takes a text description and encodes it into a feature vector using the CLIP model.
|
|
@@ -191,6 +199,7 @@ def visualize_gradcam(viz_image_id):
|
|
| 191 |
image_url = st.session_state.images_info.loc[viz_image_id]["image_url"]
|
| 192 |
image_response = requests.get(image_url)
|
| 193 |
image = Image.open(BytesIO(image_response.content), formats=["JPEG", "GIF"])
|
|
|
|
| 194 |
|
| 195 |
img_dim = 224
|
| 196 |
if st.session_state.active_model == "M-CLIP (multiple languages)":
|
|
@@ -198,62 +207,141 @@ def visualize_gradcam(viz_image_id):
|
|
| 198 |
|
| 199 |
orig_img_dims = image.size
|
| 200 |
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
if st.session_state.active_model == "M-CLIP (multiple languages)":
|
| 204 |
-
p_image = (
|
| 205 |
-
st.session_state.ml_image_preprocess(altered_image)
|
| 206 |
-
.unsqueeze(0)
|
| 207 |
-
.to(st.session_state.device)
|
| 208 |
-
)
|
| 209 |
-
|
| 210 |
# Sometimes used for token importance viz
|
| 211 |
tokenized_text = st.session_state.ml_tokenizer.tokenize(
|
| 212 |
st.session_state.search_field_value
|
| 213 |
)
|
| 214 |
-
image_model = st.session_state.ml_image_model
|
| 215 |
-
# tokenize = st.session_state.ml_tokenizer.tokenize
|
| 216 |
|
| 217 |
text_features = st.session_state.ml_model.forward(
|
| 218 |
st.session_state.search_field_value, st.session_state.ml_tokenizer
|
| 219 |
)
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
st.session_state.ml_image_model.visual,
|
| 225 |
-
st.session_state.device,
|
| 226 |
-
img_dim=img_dim,
|
| 227 |
-
)
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
|
|
|
|
|
|
| 235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
# Sometimes used for token importance viz
|
| 237 |
tokenized_text = st.session_state.ja_tokenizer.tokenize(
|
| 238 |
st.session_state.search_field_value
|
| 239 |
)
|
| 240 |
-
image_model = st.session_state.ja_image_model
|
| 241 |
|
| 242 |
t_text = st.session_state.ja_tokenizer(
|
| 243 |
st.session_state.search_field_value, return_tensors="pt"
|
| 244 |
)
|
| 245 |
text_features = st.session_state.ja_model.get_text_features(**t_text)
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
transform = ToPILImage()
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
if orig_img_dims[0] > orig_img_dims[1]:
|
| 259 |
scale_factor = MAX_IMG_WIDTH / orig_img_dims[0]
|
|
@@ -262,14 +350,27 @@ def visualize_gradcam(viz_image_id):
|
|
| 262 |
scale_factor = MAX_IMG_HEIGHT / orig_img_dims[1]
|
| 263 |
scaled_dims = [int(orig_img_dims[0] * scale_factor), MAX_IMG_HEIGHT]
|
| 264 |
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
image_io = BytesIO()
|
| 268 |
st.session_state.activations_image.save(image_io, "PNG")
|
| 269 |
dataurl = "data:image/png;base64," + b64encode(image_io.getvalue()).decode("ascii")
|
| 270 |
|
| 271 |
st.html(
|
| 272 |
-
f"""<div style="display: flex; flex-direction: column; align-items: center">
|
| 273 |
<img src="{dataurl}" />
|
| 274 |
</div>"""
|
| 275 |
)
|
|
@@ -326,7 +427,11 @@ def visualize_gradcam(viz_image_id):
|
|
| 326 |
st.table(st.session_state.text_table_df)
|
| 327 |
|
| 328 |
|
| 329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
def image_modal(vis_image_id):
|
| 331 |
visualize_gradcam(vis_image_id)
|
| 332 |
|
|
@@ -363,7 +468,7 @@ st.markdown(
|
|
| 363 |
unsafe_allow_html=True,
|
| 364 |
)
|
| 365 |
|
| 366 |
-
search_row = st.columns([45,
|
| 367 |
with search_row[0]:
|
| 368 |
search_field = st.text_input(
|
| 369 |
label="search",
|
|
@@ -379,8 +484,20 @@ with search_row[1]:
|
|
| 379 |
with search_row[2]:
|
| 380 |
st.empty()
|
| 381 |
with search_row[3]:
|
| 382 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
with search_row[4]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
st.radio(
|
| 385 |
"CLIP Model",
|
| 386 |
options=["M-CLIP (multiple languages)", "J-CLIP (日本語)"],
|
|
|
|
| 18 |
vit_perword_relevance,
|
| 19 |
) # , interpret_vit_overlapped
|
| 20 |
|
| 21 |
+
MAX_IMG_WIDTH = 500
|
| 22 |
MAX_IMG_HEIGHT = 800
|
| 23 |
|
| 24 |
st.set_page_config(layout="wide")
|
| 25 |
|
| 26 |
|
| 27 |
+
def load_image_features():
|
| 28 |
+
# Load the image feature vectors
|
| 29 |
+
if st.session_state.vision_mode == "tiled":
|
| 30 |
+
ml_image_features = np.load("./image_features/tiled_ml_features.npy")
|
| 31 |
+
ja_image_features = np.load("./image_features/tiled_ja_features.npy")
|
| 32 |
+
elif st.session_state.vision_mode == "stretched":
|
| 33 |
+
ml_image_features = np.load("./image_features/resized_ml_features.npy")
|
| 34 |
+
ja_image_features = np.load("./image_features/resized_ja_features.npy")
|
| 35 |
+
else: # st.session_state.vision_mode == "cropped":
|
| 36 |
+
ml_image_features = np.load("./image_features/cropped_ml_features.npy")
|
| 37 |
+
ja_image_features = np.load("./image_features/cropped_ja_features.npy")
|
| 38 |
+
|
| 39 |
+
# Convert features to Tensors: Float32 on CPU and Float16 on GPU
|
| 40 |
+
device = st.session_state.device
|
| 41 |
+
if device == "cpu":
|
| 42 |
+
ml_image_features = torch.from_numpy(ml_image_features).float().to(device)
|
| 43 |
+
ja_image_features = torch.from_numpy(ja_image_features).float().to(device)
|
| 44 |
+
else:
|
| 45 |
+
ml_image_features = torch.from_numpy(ml_image_features).to(device)
|
| 46 |
+
ja_image_features = torch.from_numpy(ja_image_features).to(device)
|
| 47 |
+
|
| 48 |
+
st.session_state.ml_image_features = ml_image_features / ml_image_features.norm(
|
| 49 |
+
dim=-1, keepdim=True
|
| 50 |
+
)
|
| 51 |
+
st.session_state.ja_image_features = ja_image_features / ja_image_features.norm(
|
| 52 |
+
dim=-1, keepdim=True
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
string_search()
|
| 56 |
+
|
| 57 |
+
|
| 58 |
def init():
|
| 59 |
st.session_state.current_page = 1
|
| 60 |
|
|
|
|
| 65 |
ml_model_name = "M-CLIP/XLM-Roberta-Large-Vit-B-16Plus"
|
| 66 |
ml_model_path = "./models/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"
|
| 67 |
|
| 68 |
+
with st.spinner("Loading models and data, please wait..."):
|
| 69 |
+
st.session_state.ml_image_model, st.session_state.ml_image_preprocess = load(
|
| 70 |
+
ml_model_path, device=device, jit=False
|
| 71 |
+
)
|
| 72 |
|
| 73 |
+
st.session_state.ml_model = (
|
| 74 |
+
pt_multilingual_clip.MultilingualCLIP.from_pretrained(ml_model_name)
|
| 75 |
+
)
|
| 76 |
+
st.session_state.ml_tokenizer = AutoTokenizer.from_pretrained(ml_model_name)
|
| 77 |
|
| 78 |
+
ja_model_name = "hakuhodo-tech/japanese-clip-vit-h-14-bert-wider"
|
| 79 |
+
ja_model_path = "./models/ViT-H-14-laion2B-s32B-b79K.bin"
|
| 80 |
|
| 81 |
+
st.session_state.ja_image_model, st.session_state.ja_image_preprocess = load(
|
| 82 |
+
ja_model_path, device=device, jit=False
|
| 83 |
+
)
|
| 84 |
|
| 85 |
+
st.session_state.ja_model = AutoModel.from_pretrained(
|
| 86 |
+
ja_model_name, trust_remote_code=True
|
| 87 |
+
).to(device)
|
| 88 |
+
st.session_state.ja_tokenizer = AutoTokenizer.from_pretrained(
|
| 89 |
+
ja_model_name, trust_remote_code=True
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# Load the image IDs
|
| 93 |
+
st.session_state.images_info = pd.read_csv("./metadata.csv")
|
| 94 |
+
st.session_state.images_info.set_index("filename", inplace=True)
|
| 95 |
+
|
| 96 |
+
with open("./images_list.txt", "r", encoding="utf-8") as images_list:
|
| 97 |
+
st.session_state.image_ids = list(images_list.read().strip().split("\n"))
|
| 98 |
|
| 99 |
+
st.session_state.active_model = "M-CLIP (multiple languages)"
|
| 100 |
|
| 101 |
+
st.session_state.vision_mode = "tiled"
|
| 102 |
st.session_state.search_image_ids = []
|
| 103 |
st.session_state.search_image_scores = {}
|
| 104 |
st.session_state.activations_image = None
|
| 105 |
st.session_state.text_table_df = None
|
| 106 |
|
| 107 |
+
with st.spinner("Loading models and data, please wait..."):
|
| 108 |
+
load_image_features()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
|
| 111 |
+
if "images_info" not in st.session_state:
|
| 112 |
+
init()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
|
| 115 |
# The `encode_search_query` function takes a text description and encodes it into a feature vector using the CLIP model.
|
|
|
|
| 199 |
image_url = st.session_state.images_info.loc[viz_image_id]["image_url"]
|
| 200 |
image_response = requests.get(image_url)
|
| 201 |
image = Image.open(BytesIO(image_response.content), formats=["JPEG", "GIF"])
|
| 202 |
+
image = image.convert("RGB")
|
| 203 |
|
| 204 |
img_dim = 224
|
| 205 |
if st.session_state.active_model == "M-CLIP (multiple languages)":
|
|
|
|
| 207 |
|
| 208 |
orig_img_dims = image.size
|
| 209 |
|
| 210 |
+
##### If the features are based on tiled image slices
|
| 211 |
+
tile_behavior = None
|
| 212 |
+
|
| 213 |
+
if st.session_state.vision_mode == "tiled":
|
| 214 |
+
scaled_dims = [img_dim, img_dim]
|
| 215 |
+
|
| 216 |
+
if orig_img_dims[0] > orig_img_dims[1]:
|
| 217 |
+
scale_ratio = round(orig_img_dims[0] / orig_img_dims[1])
|
| 218 |
+
if scale_ratio > 1:
|
| 219 |
+
scaled_dims = [scale_ratio * img_dim, img_dim]
|
| 220 |
+
tile_behavior = "width"
|
| 221 |
+
elif orig_img_dims[0] < orig_img_dims[1]:
|
| 222 |
+
scale_ratio = round(orig_img_dims[1] / orig_img_dims[0])
|
| 223 |
+
if scale_ratio > 1:
|
| 224 |
+
scaled_dims = [img_dim, scale_ratio * img_dim]
|
| 225 |
+
tile_behavior = "height"
|
| 226 |
+
|
| 227 |
+
resized_image = image.resize(scaled_dims, Image.LANCZOS)
|
| 228 |
+
|
| 229 |
+
if tile_behavior == "width":
|
| 230 |
+
image_tiles = []
|
| 231 |
+
for x in range(0, scale_ratio):
|
| 232 |
+
box = (x * img_dim, 0, (x + 1) * img_dim, img_dim)
|
| 233 |
+
image_tiles.append(resized_image.crop(box))
|
| 234 |
+
|
| 235 |
+
elif tile_behavior == "height":
|
| 236 |
+
image_tiles = []
|
| 237 |
+
for y in range(0, scale_ratio):
|
| 238 |
+
box = (0, y * img_dim, img_dim, (y + 1) * img_dim)
|
| 239 |
+
image_tiles.append(resized_image.crop(box))
|
| 240 |
+
|
| 241 |
+
else:
|
| 242 |
+
image_tiles = [resized_image]
|
| 243 |
+
|
| 244 |
+
elif st.session_state.vision_mode == "stretched":
|
| 245 |
+
image_tiles = [image.resize((img_dim, img_dim), Image.LANCZOS)]
|
| 246 |
+
|
| 247 |
+
else: # vision_mode == "cropped"
|
| 248 |
+
if orig_img_dims[0] > orig_img_dims[1]:
|
| 249 |
+
scale_factor = orig_img_dims[0] / orig_img_dims[1]
|
| 250 |
+
resized_img_dims = (round(scale_factor * img_dim), img_dim)
|
| 251 |
+
resized_img = image.resize(resized_img_dims)
|
| 252 |
+
elif orig_img_dims[0] < orig_img_dims[1]:
|
| 253 |
+
scale_factor = orig_img_dims[1] / orig_img_dims[0]
|
| 254 |
+
resized_img_dims = (img_dim, round(scale_factor * img_dim))
|
| 255 |
+
else:
|
| 256 |
+
resized_img_dims = (img_dim, img_dim)
|
| 257 |
+
|
| 258 |
+
resized_img = image.resize(resized_img_dims)
|
| 259 |
+
|
| 260 |
+
left = round((resized_img_dims[0] - img_dim) / 2)
|
| 261 |
+
top = round((resized_img_dims[1] - img_dim) / 2)
|
| 262 |
+
x_right = round(resized_img_dims[0] - img_dim) - left
|
| 263 |
+
x_bottom = round(resized_img_dims[1] - img_dim) - top
|
| 264 |
+
right = resized_img_dims[0] - x_right
|
| 265 |
+
bottom = resized_img_dims[1] - x_bottom
|
| 266 |
+
|
| 267 |
+
# Crop the center of the image
|
| 268 |
+
image_tiles = [resized_img.crop((left, top, right, bottom))]
|
| 269 |
+
|
| 270 |
+
image_visualizations = []
|
| 271 |
|
| 272 |
if st.session_state.active_model == "M-CLIP (multiple languages)":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
# Sometimes used for token importance viz
|
| 274 |
tokenized_text = st.session_state.ml_tokenizer.tokenize(
|
| 275 |
st.session_state.search_field_value
|
| 276 |
)
|
|
|
|
|
|
|
| 277 |
|
| 278 |
text_features = st.session_state.ml_model.forward(
|
| 279 |
st.session_state.search_field_value, st.session_state.ml_tokenizer
|
| 280 |
)
|
| 281 |
|
| 282 |
+
image_model = st.session_state.ml_image_model
|
| 283 |
+
# tokenize = st.session_state.ml_tokenizer.tokenize
|
| 284 |
+
image_model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
+
for altered_image in image_tiles:
|
| 287 |
+
image_model.zero_grad()
|
| 288 |
+
|
| 289 |
+
p_image = (
|
| 290 |
+
st.session_state.ml_image_preprocess(altered_image)
|
| 291 |
+
.unsqueeze(0)
|
| 292 |
+
.to(st.session_state.device)
|
| 293 |
+
)
|
| 294 |
|
| 295 |
+
vis_t = interpret_vit(
|
| 296 |
+
p_image.type(st.session_state.ml_image_model.dtype),
|
| 297 |
+
text_features,
|
| 298 |
+
image_model.visual,
|
| 299 |
+
st.session_state.device,
|
| 300 |
+
img_dim=img_dim,
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
image_visualizations.append(vis_t)
|
| 304 |
+
|
| 305 |
+
else:
|
| 306 |
# Sometimes used for token importance viz
|
| 307 |
tokenized_text = st.session_state.ja_tokenizer.tokenize(
|
| 308 |
st.session_state.search_field_value
|
| 309 |
)
|
|
|
|
| 310 |
|
| 311 |
t_text = st.session_state.ja_tokenizer(
|
| 312 |
st.session_state.search_field_value, return_tensors="pt"
|
| 313 |
)
|
| 314 |
text_features = st.session_state.ja_model.get_text_features(**t_text)
|
| 315 |
|
| 316 |
+
image_model = st.session_state.ja_image_model
|
| 317 |
+
image_model.eval()
|
| 318 |
+
|
| 319 |
+
for altered_image in image_tiles:
|
| 320 |
+
image_model.zero_grad()
|
| 321 |
+
|
| 322 |
+
p_image = (
|
| 323 |
+
st.session_state.ja_image_preprocess(altered_image)
|
| 324 |
+
.unsqueeze(0)
|
| 325 |
+
.to(st.session_state.device)
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
vis_t = interpret_vit(
|
| 329 |
+
p_image.type(st.session_state.ja_image_model.dtype),
|
| 330 |
+
text_features,
|
| 331 |
+
image_model.visual,
|
| 332 |
+
st.session_state.device,
|
| 333 |
+
img_dim=img_dim,
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
image_visualizations.append(vis_t)
|
| 337 |
|
| 338 |
transform = ToPILImage()
|
| 339 |
+
|
| 340 |
+
vis_images = [transform(vis_t) for vis_t in image_visualizations]
|
| 341 |
+
|
| 342 |
+
if st.session_state.vision_mode == "cropped":
|
| 343 |
+
resized_img.paste(vis_images[0], (left, top))
|
| 344 |
+
vis_images = [resized_img]
|
| 345 |
|
| 346 |
if orig_img_dims[0] > orig_img_dims[1]:
|
| 347 |
scale_factor = MAX_IMG_WIDTH / orig_img_dims[0]
|
|
|
|
| 350 |
scale_factor = MAX_IMG_HEIGHT / orig_img_dims[1]
|
| 351 |
scaled_dims = [int(orig_img_dims[0] * scale_factor), MAX_IMG_HEIGHT]
|
| 352 |
|
| 353 |
+
if tile_behavior == "width":
|
| 354 |
+
vis_image = Image.new("RGB", (len(vis_images) * img_dim, img_dim))
|
| 355 |
+
for x, v_img in enumerate(vis_images):
|
| 356 |
+
vis_image.paste(v_img, (x * img_dim, 0))
|
| 357 |
+
st.session_state.activations_image = vis_image.resize(scaled_dims)
|
| 358 |
+
|
| 359 |
+
elif tile_behavior == "height":
|
| 360 |
+
vis_image = Image.new("RGB", (img_dim, len(vis_images) * img_dim))
|
| 361 |
+
for y, v_img in enumerate(vis_images):
|
| 362 |
+
vis_image.paste(v_img, (0, y * img_dim))
|
| 363 |
+
st.session_state.activations_image = vis_image.resize(scaled_dims)
|
| 364 |
+
|
| 365 |
+
else:
|
| 366 |
+
st.session_state.activations_image = vis_images[0].resize(scaled_dims)
|
| 367 |
|
| 368 |
image_io = BytesIO()
|
| 369 |
st.session_state.activations_image.save(image_io, "PNG")
|
| 370 |
dataurl = "data:image/png;base64," + b64encode(image_io.getvalue()).decode("ascii")
|
| 371 |
|
| 372 |
st.html(
|
| 373 |
+
f"""<div style="display: flex; flex-direction: column; align-items: center;">
|
| 374 |
<img src="{dataurl}" />
|
| 375 |
</div>"""
|
| 376 |
)
|
|
|
|
| 427 |
st.table(st.session_state.text_table_df)
|
| 428 |
|
| 429 |
|
| 430 |
+
def format_vision_mode(mode_stub):
|
| 431 |
+
return f"Vision mode: {mode_stub.capitalize()}"
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
@st.dialog(" ", width="large")
|
| 435 |
def image_modal(vis_image_id):
|
| 436 |
visualize_gradcam(vis_image_id)
|
| 437 |
|
|
|
|
| 468 |
unsafe_allow_html=True,
|
| 469 |
)
|
| 470 |
|
| 471 |
+
search_row = st.columns([45, 5, 1, 15, 1, 8, 25], vertical_alignment="center")
|
| 472 |
with search_row[0]:
|
| 473 |
search_field = st.text_input(
|
| 474 |
label="search",
|
|
|
|
| 484 |
with search_row[2]:
|
| 485 |
st.empty()
|
| 486 |
with search_row[3]:
|
| 487 |
+
st.selectbox(
|
| 488 |
+
"Vision mode:",
|
| 489 |
+
options=["tiled", "stretched", "cropped"],
|
| 490 |
+
key="vision_mode",
|
| 491 |
+
help="How to consider images that aren't square",
|
| 492 |
+
on_change=load_image_features,
|
| 493 |
+
format_func=format_vision_mode,
|
| 494 |
+
label_visibility="collapsed",
|
| 495 |
+
)
|
| 496 |
with search_row[4]:
|
| 497 |
+
st.empty()
|
| 498 |
+
with search_row[5]:
|
| 499 |
+
st.markdown("**CLIP Model:**")
|
| 500 |
+
with search_row[6]:
|
| 501 |
st.radio(
|
| 502 |
"CLIP Model",
|
| 503 |
options=["M-CLIP (multiple languages)", "J-CLIP (日本語)"],
|