File size: 5,154 Bytes
40a9bc1
 
 
 
 
 
 
 
 
 
55b8c16
40a9bc1
 
 
 
 
 
 
 
 
55b8c16
40a9bc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b8c16
 
 
 
 
 
 
40a9bc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a5942b
55b8c16
40a9bc1
 
 
 
 
91f3db9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import streamlit as st
import pandas as pd
from huggingface_hub import hf_hub_download
import joblib

# Download and load the model
model_path = hf_hub_download(repo_id="asvravi/asv-tourism-package", filename="best_toursim_package_model_v1.joblib")
model = joblib.load(model_path)

# Streamlit UI for Tourism Package Prediction
st.title("Tourism Package Prediction")
st.write("""
This application predicts the likelihood of a customer buying the new Tourism Package.
Please enter the data below to get a prediction.
""")

# User input
st.header("Section 1 – Basic Information")

# ---------- Row 1 ----------
col1, col2, col3, col7 = st.columns(4)

with col1:
    age = st.number_input(
        "Age",
        min_value=1,
        max_value=150,
        value=25
    )

with col2:
    # Marital status alphabetically
    marital_status_options = sorted(["Married", "Single", "Divorced", "Unmarried"])
    marital_status = st.selectbox(
        "Marital Status",
        marital_status_options,
        index=0
    )

with col3:
    gender = st.radio(
        "Gender",
        ["Male", "Female"],
        index=0
    )

with col7:
    own_car = st.selectbox(
        "Own a Car",
        ["Yes", "No"],
        index=0
    )

# ---------- Row 2 ----------
col4, col5, col6 = st.columns(3)

with col4:
    city_tier = st.selectbox(
        "City Tier",
        [1, 2, 3],
        index=0
    )

with col5:
    total_family = st.number_input(
        "Total Family Members",
        min_value=1,
        max_value=50,
        value=1,
        step=1
    )

with col6:
    children = st.number_input(
        "No. of Children (age > 5)",
        min_value=0,
        max_value=20,
        value=0,
        step=1
    )

st.header("Section 2 – Professional Details")

# ---------- Row 1 ----------
col1, col2, col3 = st.columns(3)

with col1:
    occupation_options = sorted(["Free Lancer", "Salaried", "Large Business", "Small Business"])
    occupation = st.selectbox(
        "Occupation",
        occupation_options,
        index=0
    )

with col2:
    designation_options = sorted(["AVP", "Manager", "Senior Manager", "Executive", "VP"])
    designation = st.selectbox(
        "Designation",
        designation_options,
        index=0
    )

with col3:
    monthly_salary = st.number_input(
        "Monthly Salary",
        min_value=1000,
        max_value=100000,
        value=1000,
        step=100
    )


st.header("Section 3 – Travel Preferences")

# ---------- Row 1 ----------
col1, col2, col3 = st.columns(3)

with col1:
    property_star = st.selectbox(
        "Preferred Property Star",
        [3, 4, 5],
        index=0
    )

with col2:
    trips_per_year = st.number_input(
        "Number of Trips per Year",
        min_value=1,
        max_value=50,
        value=1,
        step=1
    )

with col3:
    passport = st.selectbox(
        "Passport",
        ["Yes", "No"],
        index=0
    )

st.header("Section 4 – Sales Interaction Details")

# ---------- Row 1 ----------
col1, col2, col3 = st.columns(3)

with col1:
    type_of_contact = st.selectbox(
        "Type of Contact",
        ["Company Invited", "Self Enquiry"],
        index=0
    )

with col2:
    product_pitched = st.selectbox(
        "Product Pitched",
        ["Basic", "Deluxe", "King", "Standard", "Super Deluxe"],
        index=0
    )

with col3:
    pitch_duration = st.number_input(
        "Duration of Pitch (minutes)",
        min_value=1,
        max_value=150,
        value=1,
        step=1
    )

# ---------- Row 2 ----------
col4, col5, col6 = st.columns(3)

with col4:
    followups = st.number_input(
        "Number of Follow-ups",
        min_value=1,
        max_value=10,
        value=1,
        step=1
    )

with col5:
    pitch_satisfaction = st.selectbox(
        "Pitch Satisfaction Score",
        [1, 2, 3, 4, 5],
        index=0
    )


own_car = 1 if own_car == "Yes" else 0
passport = 1 if passport == "Yes" else 0

# Assemble input into DataFrame
input_data = pd.DataFrame([{
    'Age': age,
    'DurationOfPitch': pitch_duration,
    'NumberOfFollowups': followups,
    'PitchSatisfactionScore': pitch_satisfaction,
    'NumberOfPersonVisiting': total_family,
    'PreferredPropertyStar': property_star,
    'NumberOfTrips': trips_per_year,
    'Passport': passport,
    'OwnCar': own_car,
    'NumberOfChildrenVisiting': children,
    'MonthlyIncome': monthly_salary,
    'CityTier': city_tier,     
    'TypeofContact': type_of_contact,         
    'Occupation': occupation,            
    'Gender': gender,              
    'ProductPitched': product_pitched,
    'MaritalStatus': marital_status,         
    'Designation': designation                        
}])

classification_threshold = 0.45

# Predict button
if st.button("Predict"):
    prediction_proba = model.predict_proba(input_data)[0, 1]
    prediction = (prediction_proba >= classification_threshold).astype(int)
    result = "likely to buy" if prediction == 1 else "not likely to buy"
    st.subheader("Prediction Result")
    st.markdown(
    f"Based on the information provided, the customer is **{result}** the new tourism package."
)