Spaces:
Runtime error
Runtime error
Miquel Farre
commited on
Commit
·
f38285f
1
Parent(s):
4bc123c
app.py
CHANGED
|
@@ -32,47 +32,6 @@ def format_duration(seconds: int) -> str:
|
|
| 32 |
return f"{minutes}:{secs:02d}"
|
| 33 |
|
| 34 |
|
| 35 |
-
# @spaces.GPU
|
| 36 |
-
# def process_video(
|
| 37 |
-
# video_path: str,
|
| 38 |
-
# progress = gr.Progress()
|
| 39 |
-
# ) -> Tuple[str, str, str, str]:
|
| 40 |
-
# try:
|
| 41 |
-
# # duration = get_video_duration_seconds(video_path)
|
| 42 |
-
# # if duration > 1200: # 20 minutes
|
| 43 |
-
# # return None, None, None, "Video must be shorter than 20 minutes"
|
| 44 |
-
|
| 45 |
-
# progress(0.1, desc="Loading model...")
|
| 46 |
-
# model, processor = load_model()
|
| 47 |
-
# detector = BatchedVideoHighlightDetector(model, processor, batch_size=8)
|
| 48 |
-
|
| 49 |
-
# progress(0.2, desc="Analyzing video content...")
|
| 50 |
-
# video_description = detector.analyze_video_content(video_path)
|
| 51 |
-
|
| 52 |
-
# progress(0.3, desc="Determining highlight types...")
|
| 53 |
-
# highlight_types = detector.determine_highlights(video_description)
|
| 54 |
-
|
| 55 |
-
# progress(0.4, desc="Detecting and extracting highlights...")
|
| 56 |
-
# with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
| 57 |
-
# output_path = tmp_file.name
|
| 58 |
-
|
| 59 |
-
# detector.create_highlight_video(video_path, output_path)
|
| 60 |
-
|
| 61 |
-
# # progress(0.9, desc="Adding watermark...")
|
| 62 |
-
# # output_path = temp_output.replace('.mp4', '_watermark.mp4')
|
| 63 |
-
# # add_watermark(temp_output, output_path)
|
| 64 |
-
|
| 65 |
-
# os.unlink(output_path)
|
| 66 |
-
# progress(1.0, desc="Complete!")
|
| 67 |
-
|
| 68 |
-
# video_description = video_description[:500] + "..." if len(video_description) > 500 else video_description
|
| 69 |
-
# highlight_types = highlight_types[:500] + "..." if len(highlight_types) > 500 else highlight_types
|
| 70 |
-
|
| 71 |
-
# return output_path, video_description, highlight_types, None
|
| 72 |
-
|
| 73 |
-
# except Exception as e:
|
| 74 |
-
# return None, None, None, f"Error processing video: {str(e)}"
|
| 75 |
-
|
| 76 |
def create_ui(examples_path: str):
|
| 77 |
examples_data = load_examples(examples_path)
|
| 78 |
|
|
@@ -131,137 +90,149 @@ def create_ui(examples_path: str):
|
|
| 131 |
with analysis_accordion:
|
| 132 |
video_description = gr.Markdown("", elem_id="video_desc")
|
| 133 |
highlight_types = gr.Markdown("", elem_id="highlight_types")
|
| 134 |
-
# # Main interface section
|
| 135 |
-
# gr.Markdown("## Try It Yourself!")
|
| 136 |
-
# with gr.Row():
|
| 137 |
-
# # Left column: Upload and Process
|
| 138 |
-
# with gr.Column(scale=1):
|
| 139 |
-
# input_video = gr.Video(
|
| 140 |
-
# label="Upload your video (max 20 minutes)",
|
| 141 |
-
# interactive=True
|
| 142 |
-
# )
|
| 143 |
-
# process_btn = gr.Button("Process Video", variant="primary")
|
| 144 |
-
|
| 145 |
-
# # Right column: Progress and Analysis
|
| 146 |
-
# with gr.Column(scale=1):
|
| 147 |
-
|
| 148 |
-
# # Output video (initially hidden)
|
| 149 |
-
# output_video = gr.Video(
|
| 150 |
-
# label="Highlight Video",
|
| 151 |
-
# visible=False,
|
| 152 |
-
# interactive=False,
|
| 153 |
-
# )
|
| 154 |
-
|
| 155 |
-
# status = gr.Markdown()
|
| 156 |
-
|
| 157 |
-
# with gr.Accordion("Model chain of thought details", open=True, visible=True) as analysis_accordion:
|
| 158 |
-
# video_description = gr.Markdown("", elem_id="video_desc")
|
| 159 |
-
# highlight_types = gr.Markdown("", elem_id="highlight_types")
|
| 160 |
-
|
| 161 |
|
| 162 |
@spaces.GPU
|
| 163 |
-
def
|
| 164 |
if not video:
|
| 165 |
-
return
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
|
| 173 |
try:
|
| 174 |
duration = get_video_duration_seconds(video)
|
| 175 |
if duration > 1200: # 20 minutes
|
| 176 |
-
return
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
#
|
| 185 |
-
yield {
|
| 186 |
-
status: "Loading model...",
|
| 187 |
-
video_description: "",
|
| 188 |
-
highlight_types: "",
|
| 189 |
-
output_video: gr.update(visible=False),
|
| 190 |
-
analysis_accordion: gr.update(visible=True)
|
| 191 |
-
}
|
| 192 |
-
|
| 193 |
model, processor = load_model()
|
| 194 |
detector = BatchedVideoHighlightDetector(model, processor, batch_size=8)
|
| 195 |
|
| 196 |
-
|
| 197 |
-
status: "Analyzing video content...",
|
| 198 |
-
video_description: "",
|
| 199 |
-
highlight_types: "",
|
| 200 |
-
output_video: gr.update(visible=False),
|
| 201 |
-
analysis_accordion: gr.update(visible=True)
|
| 202 |
-
}
|
| 203 |
-
|
| 204 |
video_desc = detector.analyze_video_content(video)
|
| 205 |
formatted_desc = f"#Summary: {video_desc[:500] + '...' if len(video_desc) > 500 else video_desc}"
|
| 206 |
|
| 207 |
-
#
|
| 208 |
-
yield {
|
| 209 |
-
status: "Determining highlight types...",
|
| 210 |
-
video_description: formatted_desc,
|
| 211 |
-
highlight_types: "",
|
| 212 |
-
output_video: gr.update(visible=False),
|
| 213 |
-
analysis_accordion: gr.update(visible=True)
|
| 214 |
-
}
|
| 215 |
-
|
| 216 |
highlights = detector.determine_highlights(video_desc)
|
| 217 |
formatted_highlights = f"#Highlights to search for: {highlights[:500] + '...' if len(highlights) > 500 else highlights}"
|
| 218 |
-
|
| 219 |
-
# Update highlights as soon as they're available
|
| 220 |
-
yield {
|
| 221 |
-
status: "Detecting and extracting highlights...",
|
| 222 |
-
video_description: formatted_desc,
|
| 223 |
-
highlight_types: formatted_highlights,
|
| 224 |
-
output_video: gr.update(visible=False),
|
| 225 |
-
analysis_accordion: gr.update(visible=True)
|
| 226 |
-
}
|
| 227 |
|
|
|
|
| 228 |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
| 229 |
temp_output = tmp_file.name
|
| 230 |
detector.create_highlight_video(video, temp_output)
|
| 231 |
|
| 232 |
-
return
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
|
| 240 |
except Exception as e:
|
| 241 |
-
return
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
process_btn.click(
|
| 250 |
-
|
| 251 |
inputs=[input_video],
|
| 252 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
)
|
| 254 |
|
| 255 |
return app
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
# @spaces.GPU
|
| 258 |
-
# def on_process(video
|
| 259 |
# if not video:
|
| 260 |
# return {
|
| 261 |
# status: "Please upload a video",
|
| 262 |
# video_description: "",
|
| 263 |
# highlight_types: "",
|
| 264 |
-
# output_video: gr.update(visible=False)
|
|
|
|
| 265 |
# }
|
| 266 |
|
| 267 |
# try:
|
|
@@ -271,45 +242,64 @@ def create_ui(examples_path: str):
|
|
| 271 |
# status: "Video must be shorter than 20 minutes",
|
| 272 |
# video_description: "",
|
| 273 |
# highlight_types: "",
|
| 274 |
-
# output_video: gr.update(visible=False)
|
|
|
|
| 275 |
# }
|
| 276 |
|
| 277 |
-
#
|
| 278 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
# model, processor = load_model()
|
| 280 |
# detector = BatchedVideoHighlightDetector(model, processor, batch_size=8)
|
| 281 |
|
| 282 |
-
#
|
| 283 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
# video_desc = detector.analyze_video_content(video)
|
| 285 |
-
# #
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
-
# progress(0.3, desc="Determining highlight types...")
|
| 289 |
-
# status.value = "Determining highlight types..."
|
| 290 |
# highlights = detector.determine_highlights(video_desc)
|
| 291 |
-
# #
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
-
# progress(0.4, desc="Detecting and extracting highlights...")
|
| 295 |
-
# status.value = "Detecting and extracting highlights..."
|
| 296 |
# with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
| 297 |
# temp_output = tmp_file.name
|
| 298 |
# detector.create_highlight_video(video, temp_output)
|
| 299 |
|
| 300 |
-
# # progress(0.9, desc="Adding watermark...")
|
| 301 |
-
# # status.value = "Adding watermark..."
|
| 302 |
-
# # output_path = temp_output.replace('.mp4', '_watermark.mp4')
|
| 303 |
-
# # add_watermark(temp_output, output_path)
|
| 304 |
-
|
| 305 |
-
# # os.unlink(temp_output)
|
| 306 |
-
# progress(1.0, desc="Complete!")
|
| 307 |
-
|
| 308 |
# return {
|
| 309 |
# status: "Processing complete!",
|
| 310 |
-
# video_description:
|
| 311 |
-
# highlight_types:
|
| 312 |
-
# output_video: gr.update(value=temp_output, visible=True)
|
|
|
|
| 313 |
# }
|
| 314 |
|
| 315 |
# except Exception as e:
|
|
@@ -317,17 +307,19 @@ def create_ui(examples_path: str):
|
|
| 317 |
# status: f"Error processing video: {str(e)}",
|
| 318 |
# video_description: "",
|
| 319 |
# highlight_types: "",
|
| 320 |
-
# output_video: gr.update(visible=False)
|
|
|
|
| 321 |
# }
|
| 322 |
|
| 323 |
# process_btn.click(
|
| 324 |
# on_process,
|
| 325 |
# inputs=[input_video],
|
| 326 |
-
# outputs=[status, video_description, highlight_types, output_video]
|
| 327 |
# )
|
| 328 |
|
| 329 |
# return app
|
| 330 |
|
|
|
|
| 331 |
if __name__ == "__main__":
|
| 332 |
# Initialize CUDA
|
| 333 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
| 32 |
return f"{minutes}:{secs:02d}"
|
| 33 |
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def create_ui(examples_path: str):
|
| 36 |
examples_data = load_examples(examples_path)
|
| 37 |
|
|
|
|
| 90 |
with analysis_accordion:
|
| 91 |
video_description = gr.Markdown("", elem_id="video_desc")
|
| 92 |
highlight_types = gr.Markdown("", elem_id="highlight_types")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
@spaces.GPU
|
| 95 |
+
def process_video(video):
|
| 96 |
if not video:
|
| 97 |
+
return [
|
| 98 |
+
"Please upload a video",
|
| 99 |
+
"",
|
| 100 |
+
"",
|
| 101 |
+
None,
|
| 102 |
+
False
|
| 103 |
+
]
|
| 104 |
|
| 105 |
try:
|
| 106 |
duration = get_video_duration_seconds(video)
|
| 107 |
if duration > 1200: # 20 minutes
|
| 108 |
+
return [
|
| 109 |
+
"Video must be shorter than 20 minutes",
|
| 110 |
+
"",
|
| 111 |
+
"",
|
| 112 |
+
None,
|
| 113 |
+
False
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
# Load model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
model, processor = load_model()
|
| 118 |
detector = BatchedVideoHighlightDetector(model, processor, batch_size=8)
|
| 119 |
|
| 120 |
+
# Analyze content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
video_desc = detector.analyze_video_content(video)
|
| 122 |
formatted_desc = f"#Summary: {video_desc[:500] + '...' if len(video_desc) > 500 else video_desc}"
|
| 123 |
|
| 124 |
+
# Determine highlights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
highlights = detector.determine_highlights(video_desc)
|
| 126 |
formatted_highlights = f"#Highlights to search for: {highlights[:500] + '...' if len(highlights) > 500 else highlights}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
# Create highlight video
|
| 129 |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
| 130 |
temp_output = tmp_file.name
|
| 131 |
detector.create_highlight_video(video, temp_output)
|
| 132 |
|
| 133 |
+
return [
|
| 134 |
+
"Processing complete!",
|
| 135 |
+
formatted_desc,
|
| 136 |
+
formatted_highlights,
|
| 137 |
+
temp_output,
|
| 138 |
+
True
|
| 139 |
+
]
|
| 140 |
|
| 141 |
except Exception as e:
|
| 142 |
+
return [
|
| 143 |
+
f"Error processing video: {str(e)}",
|
| 144 |
+
"",
|
| 145 |
+
"",
|
| 146 |
+
None,
|
| 147 |
+
False
|
| 148 |
+
]
|
| 149 |
+
|
| 150 |
+
def process_with_updates(video):
|
| 151 |
+
# Initial state
|
| 152 |
+
yield [
|
| 153 |
+
"Loading model...",
|
| 154 |
+
"",
|
| 155 |
+
"",
|
| 156 |
+
None,
|
| 157 |
+
True # Show accordion
|
| 158 |
+
]
|
| 159 |
+
|
| 160 |
+
# Analyzing video
|
| 161 |
+
yield [
|
| 162 |
+
"Analyzing video content...",
|
| 163 |
+
"",
|
| 164 |
+
"",
|
| 165 |
+
None,
|
| 166 |
+
True
|
| 167 |
+
]
|
| 168 |
+
|
| 169 |
+
# Get final results
|
| 170 |
+
results = process_video(video)
|
| 171 |
+
|
| 172 |
+
# If we're still processing, show an intermediate state
|
| 173 |
+
if results[0] != "Processing complete!":
|
| 174 |
+
yield [
|
| 175 |
+
"Detecting and extracting highlights...",
|
| 176 |
+
results[1], # description
|
| 177 |
+
results[2], # highlights
|
| 178 |
+
None,
|
| 179 |
+
True
|
| 180 |
+
]
|
| 181 |
+
|
| 182 |
+
# Return final state
|
| 183 |
+
yield results
|
| 184 |
|
| 185 |
process_btn.click(
|
| 186 |
+
process_with_updates,
|
| 187 |
inputs=[input_video],
|
| 188 |
+
outputs=[
|
| 189 |
+
status,
|
| 190 |
+
video_description,
|
| 191 |
+
highlight_types,
|
| 192 |
+
output_video,
|
| 193 |
+
analysis_accordion
|
| 194 |
+
]
|
| 195 |
)
|
| 196 |
|
| 197 |
return app
|
| 198 |
|
| 199 |
+
# gr.Markdown("## Try It Yourself!")
|
| 200 |
+
# with gr.Row():
|
| 201 |
+
# with gr.Column(scale=1):
|
| 202 |
+
# input_video = gr.Video(
|
| 203 |
+
# label="Upload your video (max 20 minutes)",
|
| 204 |
+
# interactive=True
|
| 205 |
+
# )
|
| 206 |
+
# process_btn = gr.Button("Process Video", variant="primary")
|
| 207 |
+
|
| 208 |
+
# with gr.Column(scale=1):
|
| 209 |
+
# output_video = gr.Video(
|
| 210 |
+
# label="Highlight Video",
|
| 211 |
+
# visible=False,
|
| 212 |
+
# interactive=False,
|
| 213 |
+
# )
|
| 214 |
+
|
| 215 |
+
# status = gr.Markdown()
|
| 216 |
+
|
| 217 |
+
# analysis_accordion = gr.Accordion(
|
| 218 |
+
# "Model chain of thought details",
|
| 219 |
+
# open=True,
|
| 220 |
+
# visible=False
|
| 221 |
+
# )
|
| 222 |
+
|
| 223 |
+
# with analysis_accordion:
|
| 224 |
+
# video_description = gr.Markdown("", elem_id="video_desc")
|
| 225 |
+
# highlight_types = gr.Markdown("", elem_id="highlight_types")
|
| 226 |
+
|
| 227 |
# @spaces.GPU
|
| 228 |
+
# def on_process(video):
|
| 229 |
# if not video:
|
| 230 |
# return {
|
| 231 |
# status: "Please upload a video",
|
| 232 |
# video_description: "",
|
| 233 |
# highlight_types: "",
|
| 234 |
+
# output_video: gr.update(visible=False),
|
| 235 |
+
# analysis_accordion: gr.update(visible=False)
|
| 236 |
# }
|
| 237 |
|
| 238 |
# try:
|
|
|
|
| 242 |
# status: "Video must be shorter than 20 minutes",
|
| 243 |
# video_description: "",
|
| 244 |
# highlight_types: "",
|
| 245 |
+
# output_video: gr.update(visible=False),
|
| 246 |
+
# analysis_accordion: gr.update(visible=False)
|
| 247 |
# }
|
| 248 |
|
| 249 |
+
# # Make accordion visible as soon as processing starts
|
| 250 |
+
# yield {
|
| 251 |
+
# status: "Loading model...",
|
| 252 |
+
# video_description: "",
|
| 253 |
+
# highlight_types: "",
|
| 254 |
+
# output_video: gr.update(visible=False),
|
| 255 |
+
# analysis_accordion: gr.update(visible=True)
|
| 256 |
+
# }
|
| 257 |
+
|
| 258 |
# model, processor = load_model()
|
| 259 |
# detector = BatchedVideoHighlightDetector(model, processor, batch_size=8)
|
| 260 |
|
| 261 |
+
# yield {
|
| 262 |
+
# status: "Analyzing video content...",
|
| 263 |
+
# video_description: "",
|
| 264 |
+
# highlight_types: "",
|
| 265 |
+
# output_video: gr.update(visible=False),
|
| 266 |
+
# analysis_accordion: gr.update(visible=True)
|
| 267 |
+
# }
|
| 268 |
+
|
| 269 |
# video_desc = detector.analyze_video_content(video)
|
| 270 |
+
# formatted_desc = f"#Summary: {video_desc[:500] + '...' if len(video_desc) > 500 else video_desc}"
|
| 271 |
+
|
| 272 |
+
# # Update description as soon as it's available
|
| 273 |
+
# yield {
|
| 274 |
+
# status: "Determining highlight types...",
|
| 275 |
+
# video_description: formatted_desc,
|
| 276 |
+
# highlight_types: "",
|
| 277 |
+
# output_video: gr.update(visible=False),
|
| 278 |
+
# analysis_accordion: gr.update(visible=True)
|
| 279 |
+
# }
|
| 280 |
|
|
|
|
|
|
|
| 281 |
# highlights = detector.determine_highlights(video_desc)
|
| 282 |
+
# formatted_highlights = f"#Highlights to search for: {highlights[:500] + '...' if len(highlights) > 500 else highlights}"
|
| 283 |
+
|
| 284 |
+
# # Update highlights as soon as they're available
|
| 285 |
+
# yield {
|
| 286 |
+
# status: "Detecting and extracting highlights...",
|
| 287 |
+
# video_description: formatted_desc,
|
| 288 |
+
# highlight_types: formatted_highlights,
|
| 289 |
+
# output_video: gr.update(visible=False),
|
| 290 |
+
# analysis_accordion: gr.update(visible=True)
|
| 291 |
+
# }
|
| 292 |
|
|
|
|
|
|
|
| 293 |
# with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
| 294 |
# temp_output = tmp_file.name
|
| 295 |
# detector.create_highlight_video(video, temp_output)
|
| 296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
# return {
|
| 298 |
# status: "Processing complete!",
|
| 299 |
+
# video_description: formatted_desc,
|
| 300 |
+
# highlight_types: formatted_highlights,
|
| 301 |
+
# output_video: gr.update(value=temp_output, visible=True),
|
| 302 |
+
# analysis_accordion: gr.update(visible=True)
|
| 303 |
# }
|
| 304 |
|
| 305 |
# except Exception as e:
|
|
|
|
| 307 |
# status: f"Error processing video: {str(e)}",
|
| 308 |
# video_description: "",
|
| 309 |
# highlight_types: "",
|
| 310 |
+
# output_video: gr.update(visible=False),
|
| 311 |
+
# analysis_accordion: gr.update(visible=False)
|
| 312 |
# }
|
| 313 |
|
| 314 |
# process_btn.click(
|
| 315 |
# on_process,
|
| 316 |
# inputs=[input_video],
|
| 317 |
+
# outputs=[status, video_description, highlight_types, output_video, analysis_accordion]
|
| 318 |
# )
|
| 319 |
|
| 320 |
# return app
|
| 321 |
|
| 322 |
+
|
| 323 |
if __name__ == "__main__":
|
| 324 |
# Initialize CUDA
|
| 325 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|