Spaces:
Sleeping
Sleeping
File size: 6,483 Bytes
c4b2bae e5ba825 c4b2bae e5ba825 c4b2bae 41e6f35 90878de 41e6f35 c4b2bae e5ba825 c4b2bae 26a9ca1 c4b2bae 26a9ca1 c4b2bae e5ba825 c4b2bae e5ba825 c4b2bae e5ba825 c4b2bae e5ba825 c4b2bae 0d558b8 c4b2bae 19aeb85 c4b2bae 19aeb85 c4b2bae 19aeb85 e5ba825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
"""FastAPI Backend for OpenNL2SQL with Groq AI Integration
Author: Amal SP
Created: December 2025
"""
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict, Any
import os
import logging
from groq import Groq
import json
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="OpenNL2SQL API",
description="AI-powered Natural Language to SQL Analytics System",
version="1.0.0"
)
# CORS configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize Groq client
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Groq client
try:
groq_client = Groq(api_key=GROQ_API_KEY) if GROQ_API_KEY else None
except Exception as e:
logger.warning(f"Error initializing Groq: {str(e)}")
groq_client = None
if groq_client:
logger.info("Groq client initialized successfully")
else:
logger.warning("GROQ_API_KEY not found - running in demo mode")
# Request/Response Models
class QueryRequest(BaseModel):
question: str
session_id: Optional[str] = None
class QueryResponse(BaseModel):
success: bool
sql: Optional[str] = None
results: Optional[List[Dict[str, Any]]] = None
sql_explanation: Optional[str] = None
results_explanation: Optional[str] = None
error: Optional[str] = None
session_id: str
def generate_sql_with_groq(question: str) -> tuple:
"""Generate SQL using Groq AI"""
try:
# Return demo SQL if Groq client is not available
if not groq_client:
demo_sql = "SELECT c.name, SUM(o.total) as order_total FROM customers c JOIN orders o ON c.id = o.customer_id GROUP BY c.name ORDER BY order_total DESC"
return demo_sql, None
# Sample database schema
schema = """
Database Schema:
- customers (id, name, email, created_at)
- orders (id, customer_id, total, status, created_at)
- products (id, name, price, category)
- order_items (id, order_id, product_id, quantity, price)
"""
prompt = f"""{schema}
Convert this natural language question to a SQL query:
Question: {question}
Generate ONLY a valid SELECT SQL query. No explanations.
SQL Query:"""
response = groq_client.chat.completions.create(
model="mixtral-8x7b-32768",
messages=[
{"role": "system", "content": "You are a SQL expert. Generate only valid SQL SELECT queries without any explanations or markdown formatting."},
{"role": "user", "content": prompt}
],
temperature=0.2,
max_tokens=500
)
sql = response.choices[0].message.content.strip()
# Clean up the SQL
sql = sql.replace("```sql", "").replace("```", "").strip()
return sql, None
except Exception as e:
logger.error(f"Error generating SQL: {str(e)}")
return None, str(e)
def explain_sql_with_groq(sql: str, question: str) -> str:
"""Generate explanation for SQL query"""
try:
# Return demo explanation if Groq client is not available
if not groq_client:
return "This query retrieves data from the database. Full AI explanation unavailable in demo mode."
prompt = f"""Explain this SQL query in simple terms:
Original Question: {question}
SQL Query: {sql}
Provide a brief, clear explanation:"""
response = groq_client.chat.completions.create(
model="mixtral-8x7b-32768",
messages=[
{"role": "system", "content": "You are a helpful assistant that explains SQL queries in simple terms."},
{"role": "user", "content": prompt}
],
temperature=0.3,
max_tokens=300
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error explaining SQL: {str(e)}")
return "SQL query generated successfully."
@app.get("/")
async def root():
"""Health check endpoint"""
return {
"status": "healthy",
"service": "OpenNL2SQL API",
"version": "1.0.0",
"message": "FastAPI backend with Groq AI integration running on Hugging Face Spaces!",
"groq_enabled": groq_client is not None
}
@app.get("/health")
async def health_check():
"""Detailed health check"""
return {
"status": "healthy",
"groq_api_configured": groq_client is not None,
"service": "OpenNL2SQL API"
}
@app.post("/query", response_model=QueryResponse)
async def process_query(request: QueryRequest):
"""Process natural language query with Groq AI"""
session_id = request.session_id or "demo-session"
# Check if Groq is available
# Check if Groq API key is configured
if not GROQ_API_KEY:
return QueryResponse(
success=False,
error="GROQ_API_KEY not configured. Please add it in HF Spaces Settings > Variables.",
session_id=session_id
)
sql, error = generate_sql_with_groq(request.question)
if error:
return QueryResponse(
success=False,
error=f"Failed to generate SQL: {error}",
session_id=session_id
)
# Generate explanation
explanation = explain_sql_with_groq(sql, request.question)
# For demo: return mock results
# In production, you'd execute the SQL against a real database
results = [
{"info": "SQL generated successfully! In production, this would execute against your database."},
{"note": "Connect your database to see real query results."}
]
return QueryResponse(
success=True,
sql=sql,
results=results,
sql_explanation=explanation,
results_explanation=f"Generated SQL query for: '{request.question}'. Ready to execute against your database.",
session_id=session_id
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |