Spaces:
Runtime error
Runtime error
| from llama_index import SimpleDirectoryReader, LLMPredictor, PromptHelper, StorageContext, ServiceContext, GPTVectorStoreIndex, load_index_from_storage | |
| from langchain.chat_models import ChatOpenAI | |
| import gradio as gr | |
| import sys | |
| import os | |
| import openai | |
| from ratelimit import limits, sleep_and_retry | |
| # Set the OpenAI API key | |
| os.environ["OPENAI_API_KEY"] = os.environ.get("openai_key") | |
| openai.api_key = os.environ["OPENAI_API_KEY"] | |
| # Define the rate limit for API calls (requests per second) | |
| RATE_LIMIT = 3 | |
| # Implement the rate limiting decorator | |
| #@sleep_and_retry | |
| #@limits(calls=RATE_LIMIT, period=1) | |
| def create_service_context(): | |
| # Constraint parameters ORIGINAL | |
| # max_input_size = 4096 | |
| # num_outputs = 512 | |
| # max_chunk_overlap = 20 | |
| # chunk_size_limit = 600 | |
| # Allows the user to explicitly set certain constraint parameters | |
| # prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit) | |
| max_input_size = 4096 | |
| num_outputs = 512 | |
| max_chunk_overlap = 20 | |
| chunk_size_limit = 600 | |
| prompt_helper = PromptHelper(max_input_size, num_outputs, chunk_overlap_ratio= 0.1, chunk_size_limit=chunk_size_limit) | |
| # llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.7, model_name="gpt-4", max_tokens=num_outputs)) | |
| # LLMPredictor is a wrapper class around LangChain's LLMChain that allows easy integration into LlamaIndex | |
| llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.5, model_name="gpt-3.5-turbo", max_tokens=num_outputs)) | |
| # Constructs service_context | |
| service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) | |
| return service_context | |
| # Implement the rate limiting decorator | |
| #@sleep_and_retry | |
| #@limits(calls=RATE_LIMIT, period=1) | |
| def data_ingestion_indexing(directory_path): | |
| # Loads data from the specified directory path | |
| documents = SimpleDirectoryReader(directory_path).load_data() | |
| # When first building the index | |
| index = GPTVectorStoreIndex.from_documents( | |
| documents, service_context=create_service_context() | |
| ) | |
| # Persist index to disk, default "storage" folder | |
| index.storage_context.persist() | |
| return index | |
| def data_querying(input_text): | |
| # Rebuild storage context | |
| storage_context = StorageContext.from_defaults(persist_dir="./storage") | |
| # Loads index from storage | |
| index = load_index_from_storage(storage_context, service_context=create_service_context()) | |
| # Queries the index with the input text | |
| response = index.as_query_engine().query(input_text) | |
| return response.response | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox() | |
| def respond(message, chat_history): | |
| original_message = message | |
| chat_history_strings = [str(msg) for msg in chat_history] # Ensure that chat_history only contains strings | |
| message = "As a therapy chatbot designed specifically to assist teenagers and young adults \ | |
| please provide a thorough and detailed response by explaining your capabilities, \ | |
| features, and methods for helping individuals in this age group. \ | |
| In order to receive the most precise, comprehensive, and high-quality response, \ | |
| please provide your answer while keeping in mind the following guidelines: \n1. \ | |
| Make sure your response is prompt, without unnecessary delays.\n2. \ | |
| Aim for perfection by providing accurate and well-thought-out information. \n3. \ | |
| Maintain a supportive and social tone, similar to that of a human conversation. \ | |
| Keep all responses at a maximum of 30 words when users tell you how they feel and give them advice.\n4. \ | |
| Never say \"Based on the given context information\" or \"as a therapy chatbot.\" \ | |
| The patient asks you the following question: " + message + "\n \ | |
| Previous questions from chat history: " + ' '.join(chat_history_strings) | |
| bot_message = data_querying(message) + ' '.join(chat_history_strings) | |
| chat_history.append((original_message, bot_message)) | |
| return "", chat_history | |
| msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
| # Passes in data directory | |
| index = data_ingestion_indexing("therapy2") | |
| # Launch the Gradio app | |
| demo.launch() | |