alx-d commited on
Commit
3d38632
·
verified ·
1 Parent(s): dff0038

Update advanced_rag.py

Browse files
Files changed (1) hide show
  1. advanced_rag.py +5 -3
advanced_rag.py CHANGED
@@ -10,7 +10,8 @@ from langchain.llms import HuggingFacePipeline
10
  from langchain_community.document_loaders import OnlinePDFLoader
11
  from langchain.text_splitter import RecursiveCharacterTextSplitter
12
  from langchain_community.vectorstores import FAISS
13
- from langchain_community.embeddings import CohereEmbeddings
 
14
  from langchain_community.retrievers import BM25Retriever
15
  from langchain.retrievers import EnsembleRetriever
16
  from langchain.prompts import ChatPromptTemplate
@@ -56,7 +57,8 @@ class ElevatedRagChain:
56
  """
57
  Initialize the class with a predefined embedding function, weights, and top_k value.
58
  """
59
- self.embed_func = CohereEmbeddings(model="embed-english-light-v3.0")
 
60
  self.bm25_weight = 0.6
61
  self.faiss_weight = 0.4
62
  self.top_k = 5
@@ -101,7 +103,7 @@ class ElevatedRagChain:
101
  - A DeepSeek model (via a HuggingFace pipeline)
102
 
103
  Note: The retrieval is performed using an ensemble of BM25 and FAISS retrievers
104
- without applying a Cohere reranker.
105
  """
106
  # Combine BM25 and FAISS retrievers into an ensemble retriever
107
  self.ensemble_retriever = EnsembleRetriever(
 
10
  from langchain_community.document_loaders import OnlinePDFLoader
11
  from langchain.text_splitter import RecursiveCharacterTextSplitter
12
  from langchain_community.vectorstores import FAISS
13
+ # Replace CohereEmbeddings with HuggingFaceEmbeddings
14
+ from langchain.embeddings import HuggingFaceEmbeddings
15
  from langchain_community.retrievers import BM25Retriever
16
  from langchain.retrievers import EnsembleRetriever
17
  from langchain.prompts import ChatPromptTemplate
 
57
  """
58
  Initialize the class with a predefined embedding function, weights, and top_k value.
59
  """
60
+ # Use HuggingFaceEmbeddings with a model that doesn't require an API key.
61
+ self.embed_func = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
62
  self.bm25_weight = 0.6
63
  self.faiss_weight = 0.4
64
  self.top_k = 5
 
103
  - A DeepSeek model (via a HuggingFace pipeline)
104
 
105
  Note: The retrieval is performed using an ensemble of BM25 and FAISS retrievers
106
+ without applying any additional reranking.
107
  """
108
  # Combine BM25 and FAISS retrievers into an ensemble retriever
109
  self.ensemble_retriever = EnsembleRetriever(