import gradio as gr import requests from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch model_name = "Open-Orca/Mistral-7B-OpenOrca" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) chat = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto") prompt_url = "https://raw.githubusercontent.com/ALPERALL/AlpDroid/main/prompt.txt" system_prompt = requests.get(prompt_url).text def alp_droid_chat(user_input): full_prompt = f"{system_prompt}\n\nKullanıcı: {user_input}\nAlpDroid:" output = chat(full_prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.9)[0]["generated_text"] return output.split("AlpDroid:")[-1].strip() app = gr.Interface( fn=alp_droid_chat, inputs=gr.Textbox(lines=4, placeholder="Sorunu yaz..."), outputs="text", title="AlpDroid - OpenOrca Mistral 7B", description="Kolay deploy, zahmetsiz AlpDroid." ) app.launch()