Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,12 +9,11 @@ torch.backends.cudnn.deterministic = True
|
|
| 9 |
torch.backends.cudnn.benchmark = False
|
| 10 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 11 |
|
| 12 |
-
# Initialize the base model and specific LoRA
|
| 13 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 14 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 15 |
|
| 16 |
lora_repo = "strangerzonehf/Flux-Pixel-Background-LoRA"
|
| 17 |
-
trigger_word = ""
|
| 18 |
pipe.load_lora_weights(lora_repo)
|
| 19 |
|
| 20 |
pipe.to("cuda")
|
|
@@ -23,21 +22,16 @@ MAX_SEED = 2**32-1
|
|
| 23 |
|
| 24 |
@spaces.GPU()
|
| 25 |
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 26 |
-
# Set random seed for reproducibility
|
| 27 |
if randomize_seed:
|
| 28 |
seed = random.randint(0, MAX_SEED)
|
| 29 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 30 |
|
| 31 |
-
# Update progress bar (0% saat mulai)
|
| 32 |
progress(0, "Starting image generation...")
|
| 33 |
|
| 34 |
-
# Generate image with progress updates
|
| 35 |
for i in range(1, steps + 1):
|
| 36 |
-
|
| 37 |
-
if i % (steps // 10) == 0: # Update every 10% of the steps
|
| 38 |
progress(i / steps * 100, f"Processing step {i} of {steps}...")
|
| 39 |
|
| 40 |
-
# Generate image using the pipeline
|
| 41 |
image = pipe(
|
| 42 |
prompt=f"{prompt} {trigger_word}",
|
| 43 |
num_inference_steps=steps,
|
|
@@ -48,13 +42,10 @@ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora
|
|
| 48 |
joint_attention_kwargs={"scale": lora_scale},
|
| 49 |
).images[0]
|
| 50 |
|
| 51 |
-
# Final update (100%)
|
| 52 |
progress(100, "Completed!")
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
# Example cached image and settings
|
| 57 |
-
example_image_path = "example0.webp" # Replace with the actual path to the example image
|
| 58 |
example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene."""
|
| 59 |
example_cfg_scale = 3.2
|
| 60 |
example_steps = 32
|
|
@@ -64,28 +55,105 @@ example_seed = 3981632454
|
|
| 64 |
example_lora_scale = 0.85
|
| 65 |
|
| 66 |
def load_example():
|
| 67 |
-
# Load example image from file
|
| 68 |
example_image = Image.open(example_image_path)
|
| 69 |
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
with gr.
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
generate_button.click(
|
| 91 |
run_lora,
|
|
|
|
| 9 |
torch.backends.cudnn.benchmark = False
|
| 10 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 11 |
|
|
|
|
| 12 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 13 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 14 |
|
| 15 |
lora_repo = "strangerzonehf/Flux-Pixel-Background-LoRA"
|
| 16 |
+
trigger_word = ""
|
| 17 |
pipe.load_lora_weights(lora_repo)
|
| 18 |
|
| 19 |
pipe.to("cuda")
|
|
|
|
| 22 |
|
| 23 |
@spaces.GPU()
|
| 24 |
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 25 |
if randomize_seed:
|
| 26 |
seed = random.randint(0, MAX_SEED)
|
| 27 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 28 |
|
|
|
|
| 29 |
progress(0, "Starting image generation...")
|
| 30 |
|
|
|
|
| 31 |
for i in range(1, steps + 1):
|
| 32 |
+
if i % (steps // 10) == 0:
|
|
|
|
| 33 |
progress(i / steps * 100, f"Processing step {i} of {steps}...")
|
| 34 |
|
|
|
|
| 35 |
image = pipe(
|
| 36 |
prompt=f"{prompt} {trigger_word}",
|
| 37 |
num_inference_steps=steps,
|
|
|
|
| 42 |
joint_attention_kwargs={"scale": lora_scale},
|
| 43 |
).images[0]
|
| 44 |
|
|
|
|
| 45 |
progress(100, "Completed!")
|
| 46 |
+
return image, seed
|
| 47 |
|
| 48 |
+
example_image_path = "example0.webp"
|
|
|
|
|
|
|
|
|
|
| 49 |
example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene."""
|
| 50 |
example_cfg_scale = 3.2
|
| 51 |
example_steps = 32
|
|
|
|
| 55 |
example_lora_scale = 0.85
|
| 56 |
|
| 57 |
def load_example():
|
|
|
|
| 58 |
example_image = Image.open(example_image_path)
|
| 59 |
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image
|
| 60 |
|
| 61 |
+
css = """
|
| 62 |
+
.container {max-width: 1200px; margin: auto; padding: 20px;}
|
| 63 |
+
.header {text-align: center; margin-bottom: 30px;}
|
| 64 |
+
.generate-btn {background-color: #2ecc71 !important; color: white !important;}
|
| 65 |
+
.generate-btn:hover {background-color: #27ae60 !important;}
|
| 66 |
+
.parameter-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 10px 0;}
|
| 67 |
+
.result-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px;}
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
with gr.Blocks(css=css) as app:
|
| 71 |
+
with gr.Column(elem_classes="container"):
|
| 72 |
+
gr.Markdown("# π¨ Flux ART Image Generator", elem_classes="header")
|
| 73 |
+
|
| 74 |
+
with gr.Row(equal_height=True):
|
| 75 |
+
with gr.Column(scale=3):
|
| 76 |
+
with gr.Group(elem_classes="parameter-box"):
|
| 77 |
+
prompt = gr.TextArea(
|
| 78 |
+
label="βοΈ Your Prompt",
|
| 79 |
+
placeholder="Describe the image you want to generate...",
|
| 80 |
+
lines=5
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
with gr.Group(elem_classes="parameter-box"):
|
| 84 |
+
gr.Markdown("### ποΈ Generation Parameters")
|
| 85 |
+
with gr.Row():
|
| 86 |
+
with gr.Column():
|
| 87 |
+
cfg_scale = gr.Slider(
|
| 88 |
+
label="CFG Scale",
|
| 89 |
+
minimum=1,
|
| 90 |
+
maximum=20,
|
| 91 |
+
step=0.5,
|
| 92 |
+
value=example_cfg_scale
|
| 93 |
+
)
|
| 94 |
+
steps = gr.Slider(
|
| 95 |
+
label="Steps",
|
| 96 |
+
minimum=1,
|
| 97 |
+
maximum=100,
|
| 98 |
+
step=1,
|
| 99 |
+
value=example_steps
|
| 100 |
+
)
|
| 101 |
+
lora_scale = gr.Slider(
|
| 102 |
+
label="LoRA Scale",
|
| 103 |
+
minimum=0,
|
| 104 |
+
maximum=1,
|
| 105 |
+
step=0.01,
|
| 106 |
+
value=example_lora_scale
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
with gr.Group(elem_classes="parameter-box"):
|
| 110 |
+
gr.Markdown("### π Image Dimensions")
|
| 111 |
+
with gr.Row():
|
| 112 |
+
width = gr.Slider(
|
| 113 |
+
label="Width",
|
| 114 |
+
minimum=256,
|
| 115 |
+
maximum=1536,
|
| 116 |
+
step=64,
|
| 117 |
+
value=example_width
|
| 118 |
+
)
|
| 119 |
+
height = gr.Slider(
|
| 120 |
+
label="Height",
|
| 121 |
+
minimum=256,
|
| 122 |
+
maximum=1536,
|
| 123 |
+
step=64,
|
| 124 |
+
value=example_height
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
with gr.Group(elem_classes="parameter-box"):
|
| 128 |
+
gr.Markdown("### π² Seed Settings")
|
| 129 |
+
with gr.Row():
|
| 130 |
+
randomize_seed = gr.Checkbox(
|
| 131 |
+
True,
|
| 132 |
+
label="Randomize seed"
|
| 133 |
+
)
|
| 134 |
+
seed = gr.Slider(
|
| 135 |
+
label="Seed",
|
| 136 |
+
minimum=0,
|
| 137 |
+
maximum=MAX_SEED,
|
| 138 |
+
step=1,
|
| 139 |
+
value=example_seed
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
generate_button = gr.Button(
|
| 143 |
+
"π Generate Image",
|
| 144 |
+
elem_classes="generate-btn"
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
with gr.Column(scale=2):
|
| 148 |
+
with gr.Group(elem_classes="result-box"):
|
| 149 |
+
gr.Markdown("### πΌοΈ Generated Image")
|
| 150 |
+
result = gr.Image(label="Result")
|
| 151 |
+
|
| 152 |
+
app.load(
|
| 153 |
+
load_example,
|
| 154 |
+
inputs=[],
|
| 155 |
+
outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]
|
| 156 |
+
)
|
| 157 |
|
| 158 |
generate_button.click(
|
| 159 |
run_lora,
|