Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from gradio_client import Client, handle_file | |
| import re | |
| import time | |
| import os | |
| from dotenv import load_dotenv | |
| # Load environment variables | |
| load_dotenv() | |
| # Get Hugging Face token from environment variable | |
| hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN") | |
| # Initialize client with auth | |
| client = Client( | |
| "levihsu/OOTDiffusion", | |
| hf_token=hf_token | |
| ) | |
| def generate_outfit(model_image, garment_image, n_samples=1, n_steps=20, image_scale=2, seed=-1): | |
| if model_image is None or garment_image is None: | |
| return None, "Please upload both model and garment images" | |
| max_retries = 3 | |
| for attempt in range(max_retries): | |
| try: | |
| # Use the client to predict | |
| result = client.predict( | |
| vton_img=handle_file(model_image), | |
| garm_img=handle_file(garment_image), | |
| n_samples=n_samples, | |
| n_steps=n_steps, | |
| image_scale=image_scale, | |
| seed=seed, | |
| api_name="/process_hd" | |
| ) | |
| # If result is a list, get the first item | |
| if isinstance(result, list): | |
| result = result[0] | |
| # If result is a dictionary, try to get the image path | |
| if isinstance(result, dict): | |
| if 'image' in result: | |
| return result['image'], None | |
| else: | |
| return None, "API returned unexpected format" | |
| return result, None | |
| except Exception as e: | |
| error_msg = str(e) | |
| if "exceeded your GPU quota" in error_msg: | |
| wait_time_match = re.search(r'retry in (\d+:\d+:\d+)', error_msg) | |
| wait_time = wait_time_match.group(1) if wait_time_match else "60:00" # Default to 1 hour | |
| wait_seconds = sum(int(x) * 60 ** i for i, x in enumerate(reversed(wait_time.split(':')))) # Convert wait time to seconds | |
| if attempt < max_retries - 1: | |
| time.sleep(wait_seconds) # Wait before retrying | |
| return None, f"GPU quota exceeded. Please wait {wait_time} before trying again." | |
| else: | |
| return None, f"Error: {str(e)}" | |
| # Create Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown(""" | |
| ## Outfit Diffusion - Try On Virtual Outfits | |
| ⚠️ **Note**: This demo uses free GPU quota which is limited. To avoid errors: | |
| - Use lower values for Steps (10-15) and Scale (1-2) | |
| - Wait between attempts if you get a quota error | |
| - Sign up for a Hugging Face account for more quota | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_image = gr.Image( | |
| label="Upload Model Image (person wearing clothes)", | |
| type="filepath", | |
| height=300 | |
| ) | |
| model_examples = [ | |
| "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/ba5ba7978e7302e8ab5eb733cc7221394c4e6faf/model_5.png", | |
| "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/40dade4a04a827c0fdf63c6c70b42ef26480f391/01861_00.jpg", | |
| "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/3c4639c5fab3cdcd3239609dca5afee7b0677286/model_6.png", | |
| "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/0089171df270f4532eec3d80a8f36cc8218c6840/01008_00.jpg" | |
| ] | |
| gr.Examples(examples=model_examples, inputs=model_image) | |
| garment_image = gr.Image( | |
| label="Upload Garment Image (clothing item)", | |
| type="filepath", | |
| height=300 | |
| ) | |
| garment_examples = [ | |
| "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/180d4e2a1139071a8685a5edee7ab24bcf1639f5/03244_00.jpg", | |
| "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/584dda2c5ee1d8271a6cd06225c07db89c79ca03/04825_00.jpg", | |
| "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/a51938ec99f13e548d365a9ca6d794b6fe7462af/049949_1.jpg", | |
| "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/2d64241101189251ce415df84dc9205cda9a36ca/03032_00.jpg", | |
| "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/44aee6b576cae51eeb979311306375b56b7e0d8b/02305_00.jpg", | |
| "https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/578dfa869dedb649e91eccbe566fc76435bb6bbe/049920_1.jpg" | |
| ] | |
| gr.Examples(examples=garment_examples, inputs=garment_image) | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Output") | |
| error_text = gr.Markdown() # Add error display | |
| with gr.Row(): | |
| with gr.Column(): | |
| n_samples = gr.Slider( | |
| label="Number of Samples", | |
| minimum=1, | |
| maximum=5, | |
| step=1, | |
| value=1 | |
| ) | |
| n_steps = gr.Slider( | |
| label="Steps (lower = faster, try 10-15)", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=10 # Reduced default | |
| ) | |
| image_scale = gr.Slider( | |
| label="Scale (lower = faster, try 1-2)", | |
| minimum=1, | |
| maximum=5, | |
| step=1, | |
| value=1 # Reduced default | |
| ) | |
| seed = gr.Number( | |
| label="Random Seed (-1 for random)", | |
| value=-1 | |
| ) | |
| generate_button = gr.Button("Generate Outfit") | |
| # Set up the action for the button | |
| generate_button.click( | |
| fn=generate_outfit, | |
| inputs=[model_image, garment_image, n_samples, n_steps, image_scale, seed], | |
| outputs=[output_image, error_text] | |
| ) | |
| # Launch the app | |
| demo.launch() | |