Update llava/serve/gradio_utils.py
Browse files- llava/serve/gradio_utils.py +52 -23
llava/serve/gradio_utils.py
CHANGED
|
@@ -7,23 +7,24 @@ from llava.model.builder import load_pretrained_model
|
|
| 7 |
from llava.utils import disable_torch_init
|
| 8 |
|
| 9 |
|
|
|
|
| 10 |
import re
|
| 11 |
import torch
|
| 12 |
|
| 13 |
-
#
|
| 14 |
GEN_KW = dict(
|
| 15 |
-
do_sample=False,
|
| 16 |
temperature=0.0,
|
| 17 |
top_p=1.0,
|
| 18 |
-
repetition_penalty=1.15,
|
| 19 |
-
no_repeat_ngram_size=3,
|
| 20 |
-
use_cache=False,
|
| 21 |
)
|
| 22 |
|
| 23 |
def _big_gpu():
|
| 24 |
try:
|
| 25 |
return (torch.cuda.is_available()
|
| 26 |
-
and torch.cuda.get_device_properties(0).total_memory / 1024**3 >= 40)
|
| 27 |
except Exception:
|
| 28 |
return False
|
| 29 |
|
|
@@ -41,21 +42,22 @@ def build_framewise_prompt(T: int) -> str:
|
|
| 41 |
)
|
| 42 |
|
| 43 |
def keep_frame_lines(text: str, T: int) -> str:
|
| 44 |
-
"""Keep only
|
| 45 |
lines = []
|
| 46 |
for ln in text.splitlines():
|
| 47 |
-
m = re.match(r"^Frame
|
| 48 |
if not m:
|
| 49 |
continue
|
| 50 |
i = int(m.group(1))
|
| 51 |
-
body = " ".join(m.group(2).split()[:10]) # ≤10 words
|
| 52 |
if 1 <= i <= T:
|
| 53 |
-
lines.append((i, f"Frame {i}: {body}"))
|
| 54 |
have = {i for i,_ in lines}
|
| 55 |
for i in range(1, T+1):
|
| 56 |
if i not in have:
|
| 57 |
-
lines.append((i, f"Frame {i}: (no description)"))
|
| 58 |
-
return "\
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
title_markdown = ("""
|
|
@@ -168,26 +170,53 @@ class Chat:
|
|
| 168 |
# streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 169 |
# print(input_ids, images_tensor[0][0].shape)
|
| 170 |
with torch.inference_mode():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
output_ids = model.generate(
|
| 172 |
input_ids,
|
| 173 |
images=images_tensor,
|
| 174 |
-
do_sample=True,
|
| 175 |
-
temperature=temperature,
|
| 176 |
max_new_tokens=max_new_tokens,
|
| 177 |
-
#
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
| 181 |
input_token_len = input_ids.shape[1]
|
| 182 |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
| 183 |
if n_diff_input_output > 0:
|
| 184 |
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
| 185 |
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
| 186 |
outputs = outputs.strip()
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
return outputs, state
|
|
|
|
|
|
|
| 193 |
|
|
|
|
| 7 |
from llava.utils import disable_torch_init
|
| 8 |
|
| 9 |
|
| 10 |
+
# ==== memory-safe, de-hallucinating generation helpers ====
|
| 11 |
import re
|
| 12 |
import torch
|
| 13 |
|
| 14 |
+
# deterministic + anti-repeat defaults
|
| 15 |
GEN_KW = dict(
|
| 16 |
+
do_sample=False,
|
| 17 |
temperature=0.0,
|
| 18 |
top_p=1.0,
|
| 19 |
+
repetition_penalty=1.15, # breaks [[[ spam
|
| 20 |
+
no_repeat_ngram_size=3, # avoids short loops
|
| 21 |
+
use_cache=False, # reduces VRAM spikes on L4
|
| 22 |
)
|
| 23 |
|
| 24 |
def _big_gpu():
|
| 25 |
try:
|
| 26 |
return (torch.cuda.is_available()
|
| 27 |
+
and torch.cuda.get_device_properties(0).total_memory / 1024**3 >= 40) # >=40GB = L40S/A100
|
| 28 |
except Exception:
|
| 29 |
return False
|
| 30 |
|
|
|
|
| 42 |
)
|
| 43 |
|
| 44 |
def keep_frame_lines(text: str, T: int) -> str:
|
| 45 |
+
\"\"\"Keep only `Frame i: ...` lines; ensure frames 1..T exist.\"\"\"
|
| 46 |
lines = []
|
| 47 |
for ln in text.splitlines():
|
| 48 |
+
m = re.match(r\"^Frame\\s+(\\d+)\\s*:\\s*(.+)$\", ln.strip())
|
| 49 |
if not m:
|
| 50 |
continue
|
| 51 |
i = int(m.group(1))
|
| 52 |
+
body = \" \".join(m.group(2).split()[:10]) # ≤10 words
|
| 53 |
if 1 <= i <= T:
|
| 54 |
+
lines.append((i, f\"Frame {i}: {body}\"))
|
| 55 |
have = {i for i,_ in lines}
|
| 56 |
for i in range(1, T+1):
|
| 57 |
if i not in have:
|
| 58 |
+
lines.append((i, f\"Frame {i}: (no description)\")) # never leaves gaps
|
| 59 |
+
return \"\\n\".join(t for _, t in sorted(lines))
|
| 60 |
+
# ==== end helpers ====
|
| 61 |
|
| 62 |
|
| 63 |
title_markdown = ("""
|
|
|
|
| 170 |
# streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 171 |
# print(input_ids, images_tensor[0][0].shape)
|
| 172 |
with torch.inference_mode():
|
| 173 |
+
# infer how many frames actually went in (works for list-of-frames or tensors)
|
| 174 |
+
def _infer_T(imgs):
|
| 175 |
+
try:
|
| 176 |
+
if isinstance(imgs, (list, tuple)) and len(imgs) > 0:
|
| 177 |
+
first = imgs[0]
|
| 178 |
+
if isinstance(first, (list, tuple)):
|
| 179 |
+
return len(first)
|
| 180 |
+
if hasattr(first, "shape"):
|
| 181 |
+
shp = list(first.shape)
|
| 182 |
+
if len(shp) >= 4: # [T, C, H, W] or [1, T, C, H, W]
|
| 183 |
+
return int(shp[0])
|
| 184 |
+
except Exception:
|
| 185 |
+
pass
|
| 186 |
+
return 8 # safe default
|
| 187 |
+
|
| 188 |
+
_T = _infer_T(images_tensor)
|
| 189 |
+
|
| 190 |
+
# VRAM-aware cap: more frames → allow a few more tokens, but stay safe on L4
|
| 191 |
+
max_new_tokens = min(16 * max(1, _T), MAX_NEW_TOKENS_BIG if _big_gpu() else MAX_NEW_TOKENS_SMALL)
|
| 192 |
+
|
| 193 |
output_ids = model.generate(
|
| 194 |
input_ids,
|
| 195 |
images=images_tensor,
|
|
|
|
|
|
|
| 196 |
max_new_tokens=max_new_tokens,
|
| 197 |
+
**GEN_KW, # <- deterministic + lower VRAM
|
| 198 |
+
stopping_criteria=[stopping_criteria],
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
input_token_len = input_ids.shape[1]
|
| 203 |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
| 204 |
if n_diff_input_output > 0:
|
| 205 |
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
| 206 |
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
| 207 |
outputs = outputs.strip()
|
| 208 |
+
# If user asked about frames, force a clean "Frame i: ..." list
|
| 209 |
+
try:
|
| 210 |
+
_T = _infer_T(images_tensor)
|
| 211 |
+
except Exception:
|
| 212 |
+
_T = 8
|
| 213 |
+
if "frame" in prompt.lower():
|
| 214 |
+
cleaned = keep_frame_lines(outputs, _T)
|
| 215 |
+
if cleaned.strip():
|
| 216 |
+
outputs = cleaned
|
| 217 |
+
|
| 218 |
+
print("response", outputs)
|
| 219 |
return outputs, state
|
| 220 |
+
|
| 221 |
+
|
| 222 |
|