Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,4 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
import random
|
| 4 |
-
from dataclasses import field
|
| 5 |
from typing import List
|
| 6 |
|
| 7 |
import gradio as gr
|
|
@@ -9,7 +6,6 @@ import numpy as np
|
|
| 9 |
import spaces
|
| 10 |
import torch
|
| 11 |
from diffusers import FluxFillPipeline
|
| 12 |
-
|
| 13 |
from loras import LoRA, loras
|
| 14 |
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -18,7 +14,6 @@ pipe = FluxFillPipeline.from_pretrained(
|
|
| 18 |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
| 19 |
).to("cuda")
|
| 20 |
|
| 21 |
-
|
| 22 |
# Flux system keywords list
|
| 23 |
flux_keywords_available = [
|
| 24 |
"IMG_1025.HEIC",
|
|
@@ -32,13 +27,14 @@ flux_keywords_available = [
|
|
| 32 |
]
|
| 33 |
|
| 34 |
|
| 35 |
-
def activate_loras(pipe, loras_with_weights):
|
| 36 |
"""
|
| 37 |
Loads the selected LoRAs into the pipeline with the specified weights.
|
| 38 |
"""
|
| 39 |
-
for
|
| 40 |
-
print(f"Loading LoRA: {
|
| 41 |
-
pipe.load_lora_weights(
|
|
|
|
| 42 |
return pipe
|
| 43 |
|
| 44 |
|
|
@@ -51,6 +47,53 @@ def deactivate_loras(pipe):
|
|
| 51 |
return pipe
|
| 52 |
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def calculate_optimal_dimensions(image):
|
| 55 |
# Extract original dimensions
|
| 56 |
original_width, original_height = image.size
|
|
@@ -89,44 +132,6 @@ def calculate_optimal_dimensions(image):
|
|
| 89 |
return width, height
|
| 90 |
|
| 91 |
|
| 92 |
-
def parse_ui_inputs(*ui_args):
|
| 93 |
-
"""
|
| 94 |
-
Parses UI inputs and extracts flux keywords and LoRAs with weights.
|
| 95 |
-
Returns: (main_inputs, selected_flux_keywords, selected_loras_with_weights)
|
| 96 |
-
"""
|
| 97 |
-
# Extract main inputs (first 6 arguments)
|
| 98 |
-
main_inputs = ui_args[:6] # image, mask, prompt, seed, steps, guidance
|
| 99 |
-
|
| 100 |
-
# Extract flux keyword selections
|
| 101 |
-
num_flux_keywords = len(flux_keywords_available)
|
| 102 |
-
flux_keyword_selections = ui_args[6:6 + num_flux_keywords]
|
| 103 |
-
|
| 104 |
-
# Extract LoRA selections and weights
|
| 105 |
-
lora_args_start = 6 + num_flux_keywords
|
| 106 |
-
lora_args = ui_args[lora_args_start:]
|
| 107 |
-
|
| 108 |
-
# Process selected flux keywords
|
| 109 |
-
selected_flux_keywords = []
|
| 110 |
-
for i, selected in enumerate(flux_keyword_selections):
|
| 111 |
-
if selected:
|
| 112 |
-
selected_flux_keywords.append(flux_keywords_available[i])
|
| 113 |
-
|
| 114 |
-
# Process selected LoRAs with weights
|
| 115 |
-
selected_loras_with_weights = []
|
| 116 |
-
for i, lora_config in enumerate(loras):
|
| 117 |
-
checkbox_idx = i * 2
|
| 118 |
-
weight_idx = i * 2 + 1
|
| 119 |
-
|
| 120 |
-
if checkbox_idx < len(lora_args):
|
| 121 |
-
checked = lora_args[checkbox_idx]
|
| 122 |
-
weight = lora_args[weight_idx] if weight_idx < len(lora_args) else 0.5
|
| 123 |
-
|
| 124 |
-
if checked:
|
| 125 |
-
selected_loras_with_weights.append((lora_config, weight))
|
| 126 |
-
|
| 127 |
-
return main_inputs, selected_flux_keywords, selected_loras_with_weights
|
| 128 |
-
|
| 129 |
-
|
| 130 |
@spaces.GPU(duration=30)
|
| 131 |
def inpaint(
|
| 132 |
image,
|
|
@@ -134,65 +139,22 @@ def inpaint(
|
|
| 134 |
prompt="",
|
| 135 |
seed=0,
|
| 136 |
num_inference_steps=28,
|
| 137 |
-
guidance_scale=50
|
| 138 |
-
flux_keywords: List[str] = None,
|
| 139 |
-
loras_with_weights: List[tuple] = None # List of (LoRA, weight) tuples
|
| 140 |
):
|
| 141 |
"""
|
| 142 |
Main inpainting function with selected LoRAs and their keywords.
|
| 143 |
"""
|
| 144 |
-
if flux_keywords is None:
|
| 145 |
-
flux_keywords = []
|
| 146 |
-
if loras_with_weights is None:
|
| 147 |
-
loras_with_weights = []
|
| 148 |
-
|
| 149 |
-
# Step 1: Reset LoRAs
|
| 150 |
-
deactivate_loras(pipe)
|
| 151 |
-
|
| 152 |
-
# Step 2: Prepare selected LoRAs and load them
|
| 153 |
-
selected_loras = {}
|
| 154 |
-
active_loras = []
|
| 155 |
-
|
| 156 |
-
for lora, weight in loras_with_weights:
|
| 157 |
-
if lora.url:
|
| 158 |
-
selected_loras[lora.url] = round(weight, 1)
|
| 159 |
-
active_loras.append(lora)
|
| 160 |
-
|
| 161 |
-
if selected_loras:
|
| 162 |
-
activate_loras(pipe, selected_loras)
|
| 163 |
|
| 164 |
print("ACTIVE ADAPTERS:", pipe.get_active_adapters())
|
| 165 |
|
| 166 |
-
# Step 3: Prepare prompt
|
| 167 |
image = image.convert("RGB")
|
| 168 |
mask = mask.convert("L")
|
| 169 |
width, height = calculate_optimal_dimensions(image)
|
| 170 |
|
| 171 |
-
final_prompt = ""
|
| 172 |
-
|
| 173 |
-
# Add selected flux keywords
|
| 174 |
-
for keyword in flux_keywords:
|
| 175 |
-
final_prompt += f"{keyword}, "
|
| 176 |
-
|
| 177 |
-
# Add keywords from active LoRAs
|
| 178 |
-
for lora in active_loras:
|
| 179 |
-
if lora.Keywords:
|
| 180 |
-
keywords_str = ", ".join(lora.Keywords)
|
| 181 |
-
final_prompt += f"{keywords_str}, "
|
| 182 |
-
|
| 183 |
-
if prompt:
|
| 184 |
-
final_prompt += "\n\n"
|
| 185 |
-
final_prompt += prompt
|
| 186 |
-
|
| 187 |
-
# Step 4: Seed handling
|
| 188 |
-
if not isinstance(seed, int) or seed <= 0:
|
| 189 |
-
seed = random.randint(0, MAX_SEED)
|
| 190 |
-
|
| 191 |
-
# Step 5: Run pipeline
|
| 192 |
result = pipe(
|
| 193 |
image=image,
|
| 194 |
mask_image=mask,
|
| 195 |
-
prompt=
|
| 196 |
width=width,
|
| 197 |
height=height,
|
| 198 |
num_inference_steps=num_inference_steps,
|
|
@@ -200,17 +162,54 @@ def inpaint(
|
|
| 200 |
generator=torch.Generator().manual_seed(seed)
|
| 201 |
).images[0]
|
| 202 |
|
| 203 |
-
return result.convert("RGBA"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
def inpaint_ui_wrapper(*ui_args):
|
| 207 |
"""
|
| 208 |
UI wrapper that processes Gradio inputs and calls the main inpaint function.
|
| 209 |
"""
|
| 210 |
main_inputs, selected_flux_keywords, selected_loras_with_weights = parse_ui_inputs(*ui_args)
|
| 211 |
-
|
| 212 |
image, mask, prompt, seed, num_inference_steps, guidance_scale = main_inputs
|
| 213 |
-
|
| 214 |
return inpaint(
|
| 215 |
image=image,
|
| 216 |
mask=mask,
|
|
@@ -221,8 +220,27 @@ def inpaint_ui_wrapper(*ui_args):
|
|
| 221 |
flux_keywords=selected_flux_keywords,
|
| 222 |
loras_with_weights=selected_loras_with_weights
|
| 223 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
|
|
|
|
|
|
|
|
|
| 226 |
def toggle_input(checked, current_value):
|
| 227 |
"""
|
| 228 |
Enables or disables the Number input based on checkbox status.
|
|
@@ -235,7 +253,7 @@ def toggle_input(checked, current_value):
|
|
| 235 |
interactive=checked,
|
| 236 |
label="Adapter weight"
|
| 237 |
)
|
| 238 |
-
|
| 239 |
|
| 240 |
def create_flux_keyword_components():
|
| 241 |
"""
|
|
@@ -257,14 +275,14 @@ def create_lora_components():
|
|
| 257 |
"""
|
| 258 |
Creates interface components for each LoRA from the imported loras list.
|
| 259 |
"""
|
|
|
|
| 260 |
components = []
|
| 261 |
|
| 262 |
for lora in loras:
|
| 263 |
with gr.Row():
|
| 264 |
# Create checkbox with LoRA title
|
| 265 |
-
display_name = lora.title or lora.nombre or "Unnamed LoRA"
|
| 266 |
checkbox = gr.Checkbox(
|
| 267 |
-
label=display_name,
|
| 268 |
value=False,
|
| 269 |
info=lora.note or "" # Show note as additional info
|
| 270 |
)
|
|
@@ -278,7 +296,7 @@ def create_lora_components():
|
|
| 278 |
interactive=False,
|
| 279 |
label="Adapter weight"
|
| 280 |
)
|
| 281 |
-
|
| 282 |
# Connect checkbox with number input
|
| 283 |
checkbox.change(
|
| 284 |
toggle_input,
|
|
@@ -286,13 +304,12 @@ def create_lora_components():
|
|
| 286 |
outputs=number_input,
|
| 287 |
api_name=False
|
| 288 |
)
|
| 289 |
-
|
| 290 |
-
components.
|
| 291 |
|
| 292 |
return components
|
| 293 |
|
| 294 |
|
| 295 |
-
# Create main interface
|
| 296 |
with gr.Blocks(title="Flux.1 Fill dev Inpainting with LoRAs", theme=gr.themes.Soft()) as demo:
|
| 297 |
with gr.Row():
|
| 298 |
with gr.Column(scale=2):
|
|
@@ -326,12 +343,10 @@ with gr.Blocks(title="Flux.1 Fill dev Inpainting with LoRAs", theme=gr.themes.So
|
|
| 326 |
flux_keyword_components = create_flux_keyword_components()
|
| 327 |
|
| 328 |
# LoRAs section
|
| 329 |
-
|
| 330 |
if loras:
|
|
|
|
| 331 |
lora_components = create_lora_components()
|
| 332 |
-
else:
|
| 333 |
-
gr.Markdown("*No LoRAs found*")
|
| 334 |
-
lora_components = []
|
| 335 |
|
| 336 |
with gr.Column(scale=3):
|
| 337 |
run_btn = gr.Button("Run", variant="primary")
|
|
@@ -343,37 +358,22 @@ with gr.Blocks(title="Flux.1 Fill dev Inpainting with LoRAs", theme=gr.themes.So
|
|
| 343 |
used_prompt_box = gr.Text(label="Used prompt", lines=4)
|
| 344 |
used_seed_box = gr.Number(label="Used seed")
|
| 345 |
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
)
|
| 363 |
-
else:
|
| 364 |
-
# If no components, create simplified version
|
| 365 |
-
run_btn.click(
|
| 366 |
-
lambda *args: (None, "No LoRAs configured", 0),
|
| 367 |
-
inputs=[
|
| 368 |
-
image_input,
|
| 369 |
-
mask_input,
|
| 370 |
-
prompt_input,
|
| 371 |
-
seed_slider,
|
| 372 |
-
num_inference_steps_input,
|
| 373 |
-
guidance_scale_input
|
| 374 |
-
],
|
| 375 |
-
outputs=[result_image, used_prompt_box, used_seed_box]
|
| 376 |
-
)
|
| 377 |
|
| 378 |
if __name__ == "__main__":
|
| 379 |
-
demo.launch(share=False, show_error=True)
|
|
|
|
|
|
|
|
|
|
| 1 |
import random
|
|
|
|
| 2 |
from typing import List
|
| 3 |
|
| 4 |
import gradio as gr
|
|
|
|
| 6 |
import spaces
|
| 7 |
import torch
|
| 8 |
from diffusers import FluxFillPipeline
|
|
|
|
| 9 |
from loras import LoRA, loras
|
| 10 |
|
| 11 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 14 |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
| 15 |
).to("cuda")
|
| 16 |
|
|
|
|
| 17 |
# Flux system keywords list
|
| 18 |
flux_keywords_available = [
|
| 19 |
"IMG_1025.HEIC",
|
|
|
|
| 27 |
]
|
| 28 |
|
| 29 |
|
| 30 |
+
def activate_loras(pipe: FluxFillPipeline, loras_with_weights: list[tuple[LoRA, float]]):
|
| 31 |
"""
|
| 32 |
Loads the selected LoRAs into the pipeline with the specified weights.
|
| 33 |
"""
|
| 34 |
+
for lora, weight in loras_with_weights:
|
| 35 |
+
print(f"Loading LoRA: {lora.display_name} with weight {weight}")
|
| 36 |
+
pipe.load_lora_weights(lora.id, weight=weight)
|
| 37 |
+
|
| 38 |
return pipe
|
| 39 |
|
| 40 |
|
|
|
|
| 47 |
return pipe
|
| 48 |
|
| 49 |
|
| 50 |
+
def inpaint_wrapper(
|
| 51 |
+
image,
|
| 52 |
+
mask,
|
| 53 |
+
prompt="",
|
| 54 |
+
seed=0,
|
| 55 |
+
num_inference_steps=28,
|
| 56 |
+
guidance_scale=50,
|
| 57 |
+
flux_keywords: List[str] = None,
|
| 58 |
+
loras_with_weights: List[tuple[LoRA, float]] = None # List of (LoRA, weight) tuples
|
| 59 |
+
):
|
| 60 |
+
|
| 61 |
+
# Step 1: Reset LoRAs
|
| 62 |
+
deactivate_loras(pipe)
|
| 63 |
+
|
| 64 |
+
# Step 2: Prepare selected LoRAs and load them
|
| 65 |
+
if loras_with_weights:
|
| 66 |
+
activate_loras(pipe, loras_with_weights)
|
| 67 |
+
|
| 68 |
+
# Step 3: Prepare prompt
|
| 69 |
+
final_prompt = ""
|
| 70 |
+
|
| 71 |
+
for keyword in flux_keywords:
|
| 72 |
+
final_prompt += f"{keyword}, "
|
| 73 |
+
|
| 74 |
+
for lora, _ in loras_with_weights:
|
| 75 |
+
if lora.Keyword:
|
| 76 |
+
keywords_str = ", ".join(lora.Keywords)
|
| 77 |
+
final_prompt += f"{keywords_str}, "
|
| 78 |
+
|
| 79 |
+
if prompt:
|
| 80 |
+
final_prompt += "\n\n"
|
| 81 |
+
|
| 82 |
+
final_prompt += prompt
|
| 83 |
+
|
| 84 |
+
# Step 4: Seed handling
|
| 85 |
+
if not isinstance(seed, int) or seed < 0:
|
| 86 |
+
seed = random.randint(0, MAX_SEED)
|
| 87 |
+
|
| 88 |
+
return inpaint(
|
| 89 |
+
image,
|
| 90 |
+
mask,
|
| 91 |
+
prompt=final_prompt,
|
| 92 |
+
seed=seed,
|
| 93 |
+
num_inference_steps=num_inference_steps,
|
| 94 |
+
guidance_scale=guidance_scale,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
def calculate_optimal_dimensions(image):
|
| 98 |
# Extract original dimensions
|
| 99 |
original_width, original_height = image.size
|
|
|
|
| 132 |
return width, height
|
| 133 |
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
@spaces.GPU(duration=30)
|
| 136 |
def inpaint(
|
| 137 |
image,
|
|
|
|
| 139 |
prompt="",
|
| 140 |
seed=0,
|
| 141 |
num_inference_steps=28,
|
| 142 |
+
guidance_scale=50
|
|
|
|
|
|
|
| 143 |
):
|
| 144 |
"""
|
| 145 |
Main inpainting function with selected LoRAs and their keywords.
|
| 146 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
print("ACTIVE ADAPTERS:", pipe.get_active_adapters())
|
| 149 |
|
|
|
|
| 150 |
image = image.convert("RGB")
|
| 151 |
mask = mask.convert("L")
|
| 152 |
width, height = calculate_optimal_dimensions(image)
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
result = pipe(
|
| 155 |
image=image,
|
| 156 |
mask_image=mask,
|
| 157 |
+
prompt=prompt,
|
| 158 |
width=width,
|
| 159 |
height=height,
|
| 160 |
num_inference_steps=num_inference_steps,
|
|
|
|
| 162 |
generator=torch.Generator().manual_seed(seed)
|
| 163 |
).images[0]
|
| 164 |
|
| 165 |
+
return result.convert("RGBA"), prompt, seed
|
| 166 |
+
|
| 167 |
+
'''
|
| 168 |
+
def parse_ui_inputs(*ui_args):
|
| 169 |
+
"""
|
| 170 |
+
Parses UI inputs and extracts flux keywords and LoRAs with weights.
|
| 171 |
+
Returns: (main_inputs, selected_flux_keywords, selected_loras_with_weights)
|
| 172 |
+
"""
|
| 173 |
+
# Extract main inputs (first 6 arguments)
|
| 174 |
+
main_inputs = ui_args[:6] # image, mask, prompt, seed, steps, guidance
|
| 175 |
+
|
| 176 |
+
# Extract flux keyword selections
|
| 177 |
+
num_flux_keywords = len(flux_keywords_available)
|
| 178 |
+
flux_keyword_selections = ui_args[6:6 + num_flux_keywords]
|
| 179 |
+
|
| 180 |
+
# Extract LoRA selections and weights
|
| 181 |
+
lora_args_start = 6 + num_flux_keywords
|
| 182 |
+
lora_args = ui_args[lora_args_start:]
|
| 183 |
+
|
| 184 |
+
# Process selected flux keywords
|
| 185 |
+
selected_flux_keywords = []
|
| 186 |
+
for i, selected in enumerate(flux_keyword_selections):
|
| 187 |
+
if selected:
|
| 188 |
+
selected_flux_keywords.append(flux_keywords_available[i])
|
| 189 |
+
|
| 190 |
+
# Process selected LoRAs with weights
|
| 191 |
+
selected_loras_with_weights = []
|
| 192 |
+
for i, lora_config in enumerate(loras):
|
| 193 |
+
checkbox_idx = i * 2
|
| 194 |
+
weight_idx = i * 2 + 1
|
| 195 |
+
|
| 196 |
+
if checkbox_idx < len(lora_args):
|
| 197 |
+
checked = lora_args[checkbox_idx]
|
| 198 |
+
weight = lora_args[weight_idx] if weight_idx < len(lora_args) else 0.5
|
| 199 |
|
| 200 |
+
if checked:
|
| 201 |
+
selected_loras_with_weights.append((lora_config, weight))
|
| 202 |
+
|
| 203 |
+
return main_inputs, selected_flux_keywords, selected_loras_with_weights
|
| 204 |
|
| 205 |
def inpaint_ui_wrapper(*ui_args):
|
| 206 |
"""
|
| 207 |
UI wrapper that processes Gradio inputs and calls the main inpaint function.
|
| 208 |
"""
|
| 209 |
main_inputs, selected_flux_keywords, selected_loras_with_weights = parse_ui_inputs(*ui_args)
|
| 210 |
+
|
| 211 |
image, mask, prompt, seed, num_inference_steps, guidance_scale = main_inputs
|
| 212 |
+
|
| 213 |
return inpaint(
|
| 214 |
image=image,
|
| 215 |
mask=mask,
|
|
|
|
| 220 |
flux_keywords=selected_flux_keywords,
|
| 221 |
loras_with_weights=selected_loras_with_weights
|
| 222 |
)
|
| 223 |
+
'''
|
| 224 |
+
def selected_keywords(keyword_components):
|
| 225 |
+
|
| 226 |
+
keywords = []
|
| 227 |
+
for checkbox in keyword_components:
|
| 228 |
+
if checkbox.value:
|
| 229 |
+
keywords.append(checkbox.label)
|
| 230 |
+
|
| 231 |
+
return keywords
|
| 232 |
|
| 233 |
+
def selected_loras(components: list[tuple[gr.Checkbox, gr.Number]]) -> list[tuple[LoRA, float]]:
|
| 234 |
+
|
| 235 |
+
selected_loras_with_weights = []
|
| 236 |
+
for checkbox, number in components:
|
| 237 |
+
for lora in loras:
|
| 238 |
+
if checkbox.value and lora.display_name == checkbox.label:
|
| 239 |
+
selected_loras_with_weights.append((lora, number.value))
|
| 240 |
|
| 241 |
+
return selected_loras_with_weights
|
| 242 |
+
|
| 243 |
+
'''
|
| 244 |
def toggle_input(checked, current_value):
|
| 245 |
"""
|
| 246 |
Enables or disables the Number input based on checkbox status.
|
|
|
|
| 253 |
interactive=checked,
|
| 254 |
label="Adapter weight"
|
| 255 |
)
|
| 256 |
+
'''
|
| 257 |
|
| 258 |
def create_flux_keyword_components():
|
| 259 |
"""
|
|
|
|
| 275 |
"""
|
| 276 |
Creates interface components for each LoRA from the imported loras list.
|
| 277 |
"""
|
| 278 |
+
|
| 279 |
components = []
|
| 280 |
|
| 281 |
for lora in loras:
|
| 282 |
with gr.Row():
|
| 283 |
# Create checkbox with LoRA title
|
|
|
|
| 284 |
checkbox = gr.Checkbox(
|
| 285 |
+
label=lora.display_name,
|
| 286 |
value=False,
|
| 287 |
info=lora.note or "" # Show note as additional info
|
| 288 |
)
|
|
|
|
| 296 |
interactive=False,
|
| 297 |
label="Adapter weight"
|
| 298 |
)
|
| 299 |
+
"""
|
| 300 |
# Connect checkbox with number input
|
| 301 |
checkbox.change(
|
| 302 |
toggle_input,
|
|
|
|
| 304 |
outputs=number_input,
|
| 305 |
api_name=False
|
| 306 |
)
|
| 307 |
+
"""
|
| 308 |
+
components.append((checkbox, number_input))
|
| 309 |
|
| 310 |
return components
|
| 311 |
|
| 312 |
|
|
|
|
| 313 |
with gr.Blocks(title="Flux.1 Fill dev Inpainting with LoRAs", theme=gr.themes.Soft()) as demo:
|
| 314 |
with gr.Row():
|
| 315 |
with gr.Column(scale=2):
|
|
|
|
| 343 |
flux_keyword_components = create_flux_keyword_components()
|
| 344 |
|
| 345 |
# LoRAs section
|
| 346 |
+
lora_components = []
|
| 347 |
if loras:
|
| 348 |
+
gr.Markdown("### Available LoRAs")
|
| 349 |
lora_components = create_lora_components()
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
with gr.Column(scale=3):
|
| 352 |
run_btn = gr.Button("Run", variant="primary")
|
|
|
|
| 358 |
used_prompt_box = gr.Text(label="Used prompt", lines=4)
|
| 359 |
used_seed_box = gr.Number(label="Used seed")
|
| 360 |
|
| 361 |
+
run_btn.click(
|
| 362 |
+
inpaint_wrapper,
|
| 363 |
+
inputs=[
|
| 364 |
+
image_input,
|
| 365 |
+
mask_input,
|
| 366 |
+
prompt_input,
|
| 367 |
+
seed_slider,
|
| 368 |
+
num_inference_steps_input,
|
| 369 |
+
guidance_scale_input,
|
| 370 |
+
selected_keywords(flux_keyword_components),
|
| 371 |
+
selected_loras(lora_components)
|
| 372 |
+
],
|
| 373 |
+
outputs=[result_image, used_prompt_box, used_seed_box],
|
| 374 |
+
api_name="/inpaint"
|
| 375 |
+
)
|
| 376 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
if __name__ == "__main__":
|
| 379 |
+
demo.launch(share=False, show_error=True)
|