Spaces:
Sleeping
Sleeping
| #In-built libraries | |
| import json | |
| import tempfile | |
| import traceback | |
| from typing import Dict | |
| #third-party libraries | |
| import gradio as gr | |
| from PIL import Image | |
| from qwen_vl_utils import process_vision_info | |
| from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
| def save_temp_image(image: Image.Image) -> str: | |
| """ | |
| Saves the given PIL Image object as a temporary PNG file. | |
| Args: | |
| image (Image.Image): The image to be saved. | |
| Returns: | |
| str: The file path of the saved temporary image. | |
| """ | |
| # Create a temp file WITHOUT extension | |
| with tempfile.NamedTemporaryFile(suffix=".tmp", delete=False) as tmp_file: | |
| # Save image as PNG regardless of original format | |
| image.save(tmp_file.name, format="PNG") | |
| return tmp_file.name | |
| def id_extractor(image: Image.Image) -> Dict: | |
| # default: Load the model on the available device(s) | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto" | |
| ) | |
| # default processer | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image, | |
| }, | |
| {"type": "text", "text": "Extract all the available key details from the image in JSON"}, | |
| ], | |
| } | |
| ] | |
| # Preparation for inference | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| # Inference: Generation of the output | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| resp = output_text[-1].replace("```json", "").replace("```", "").strip() | |
| return json.loads(resp) | |
| # Define the Gradio interface for the ID extractor | |
| id_interface = gr.Interface( | |
| fn=id_extractor, | |
| inputs=gr.Image(type="pil", label="Upload an image"), | |
| outputs=gr.JSON(label="Extracted Details"), | |
| title="Upload your ID", | |
| description="Upload an image of a document. Key details will be extracted automatically." | |
| ) | |
| # Launch the Gradio interface | |
| id_interface.launch(mcp_server=True) |