Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,20 @@
|
|
| 1 |
import re
|
| 2 |
import threading
|
| 3 |
-
|
| 4 |
-
import os
|
| 5 |
-
import torch
|
| 6 |
-
import time
|
| 7 |
-
import signal
|
| 8 |
import gradio as gr
|
| 9 |
import spaces
|
| 10 |
import transformers
|
| 11 |
-
from transformers import pipeline
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
"mistralai/Mistral-7B-Instruct-v0.2": "Mistral 7B Instruct v0.2",
|
| 23 |
-
"mistralai/Mistral-Small-3.1-24B-Base-2503": "Mistral Small 3.1 (24B)",
|
| 24 |
-
"google/gemma-3-27b-it": "Google Gemma 3 (27B)",
|
| 25 |
-
"Qwen/Qwen2.5-Coder-32B-Instruct": "Qwen 2.5 Coder (32B)",
|
| 26 |
-
"open-r1/OlympicCoder-32B": "Olympic Coder (32B)"
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
-
# ๊ธฐ๋ณธ ๋ชจ๋ธ - ๊ฐ์ฅ ์์ ๋ชจ๋ธ๋ก ์ค์
|
| 30 |
-
DEFAULT_MODEL_KEY = list(available_models.keys())[0]
|
| 31 |
-
DEFAULT_MODEL_VALUE = available_models[DEFAULT_MODEL_KEY]
|
| 32 |
-
|
| 33 |
-
# ๋ชจ๋ธ ๋ก๋์ ์ฌ์ฉ๋๋ ์ ์ญ ๋ณ์
|
| 34 |
-
pipe = None
|
| 35 |
-
current_model_name = None
|
| 36 |
-
loading_in_progress = False
|
| 37 |
-
|
| 38 |
-
# Hugging Face ํ ํฐ์ผ๋ก ๋ก๊ทธ์ธ ์๋
|
| 39 |
-
try:
|
| 40 |
-
hf_token = os.getenv("HF_TOKEN")
|
| 41 |
-
if hf_token:
|
| 42 |
-
login(token=hf_token)
|
| 43 |
-
print("Hugging Face์ ์ฑ๊ณต์ ์ผ๋ก ๋ก๊ทธ์ธํ์ต๋๋ค.")
|
| 44 |
-
else:
|
| 45 |
-
print("๊ฒฝ๊ณ : HF_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ง ์์์ต๋๋ค.")
|
| 46 |
-
except Exception as e:
|
| 47 |
-
print(f"Hugging Face ๋ก๊ทธ์ธ ์๋ฌ: {str(e)}")
|
| 48 |
|
| 49 |
# ์ต์ข
๋ต๋ณ์ ๊ฐ์งํ๊ธฐ ์ํ ๋ง์ปค
|
| 50 |
ANSWER_MARKER = "**๋ต๋ณ**"
|
|
@@ -64,69 +34,31 @@ rethink_prepends = [
|
|
| 64 |
f"\n{ANSWER_MARKER}\n",
|
| 65 |
]
|
| 66 |
|
|
|
|
| 67 |
# ์์ ํ์ ๋ฌธ์ ํด๊ฒฐ์ ์ํ ์ค์
|
| 68 |
latex_delimiters = [
|
| 69 |
{"left": "$$", "right": "$$", "display": True},
|
| 70 |
{"left": "$", "right": "$", "display": False},
|
| 71 |
]
|
| 72 |
|
| 73 |
-
# ๋ชจ๋ธ ํฌ๊ธฐ ๊ธฐ๋ฐ ๊ตฌ์ฑ - ๋ชจ๋ธ ํฌ๊ธฐ์ ๋ฐ๋ฅธ ์ต์ ์ค์ ์ ์
|
| 74 |
-
MODEL_CONFIG = {
|
| 75 |
-
"small": { # <10B
|
| 76 |
-
"max_memory": {0: "10GiB"},
|
| 77 |
-
"offload": False,
|
| 78 |
-
"quantization": None
|
| 79 |
-
},
|
| 80 |
-
"medium": { # 10B-30B
|
| 81 |
-
"max_memory": {0: "30GiB"},
|
| 82 |
-
"offload": False,
|
| 83 |
-
"quantization": None
|
| 84 |
-
},
|
| 85 |
-
"large": { # >30B
|
| 86 |
-
"max_memory": {0: "60GiB"},
|
| 87 |
-
"offload": True,
|
| 88 |
-
"quantization": None
|
| 89 |
-
}
|
| 90 |
-
}
|
| 91 |
-
|
| 92 |
-
def get_model_size_category(model_name):
|
| 93 |
-
"""๋ชจ๋ธ ํฌ๊ธฐ ์นดํ
๊ณ ๋ฆฌ ๊ฒฐ์ """
|
| 94 |
-
if "2B" in model_name or "3B" in model_name or "7B" in model_name or "8B" in model_name:
|
| 95 |
-
return "small"
|
| 96 |
-
elif "15B" in model_name or "24B" in model_name or "27B" in model_name:
|
| 97 |
-
return "medium"
|
| 98 |
-
elif "32B" in model_name or "70B" in model_name:
|
| 99 |
-
return "large"
|
| 100 |
-
else:
|
| 101 |
-
# ๊ธฐ๋ณธ๊ฐ์ผ๋ก small ๋ฐํ (์์ ์ ์ํด)
|
| 102 |
-
return "small"
|
| 103 |
-
|
| 104 |
-
def clear_gpu_memory():
|
| 105 |
-
"""GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ"""
|
| 106 |
-
global pipe
|
| 107 |
-
|
| 108 |
-
if pipe is not None:
|
| 109 |
-
del pipe
|
| 110 |
-
pipe = None
|
| 111 |
-
|
| 112 |
-
# CUDA ์บ์ ์ ๋ฆฌ
|
| 113 |
-
gc.collect()
|
| 114 |
-
if torch.cuda.is_available():
|
| 115 |
-
torch.cuda.empty_cache()
|
| 116 |
-
torch.cuda.synchronize()
|
| 117 |
|
| 118 |
def reformat_math(text):
|
| 119 |
-
"""Gradio ๊ตฌ๋ฌธ(Katex)์ ์ฌ์ฉํ๋๋ก MathJax ๊ตฌ๋ถ ๊ธฐํธ ์์ .
|
|
|
|
|
|
|
|
|
|
| 120 |
text = re.sub(r"\\\[\s*(.*?)\s*\\\]", r"$$\1$$", text, flags=re.DOTALL)
|
| 121 |
text = re.sub(r"\\\(\s*(.*?)\s*\\\)", r"$\1$", text, flags=re.DOTALL)
|
| 122 |
return text
|
| 123 |
|
|
|
|
| 124 |
def user_input(message, history: list):
|
| 125 |
"""์ฌ์ฉ์ ์
๋ ฅ์ ํ์คํ ๋ฆฌ์ ์ถ๊ฐํ๊ณ ์
๋ ฅ ํ
์คํธ ์์ ๋น์ฐ๊ธฐ"""
|
| 126 |
return "", history + [
|
| 127 |
gr.ChatMessage(role="user", content=message.replace(ANSWER_MARKER, ""))
|
| 128 |
]
|
| 129 |
|
|
|
|
| 130 |
def rebuild_messages(history: list):
|
| 131 |
"""์ค๊ฐ ์๊ฐ ๊ณผ์ ์์ด ๋ชจ๋ธ์ด ์ฌ์ฉํ ํ์คํ ๋ฆฌ์์ ๋ฉ์์ง ์ฌ๊ตฌ์ฑ"""
|
| 132 |
messages = []
|
|
@@ -141,122 +73,6 @@ def rebuild_messages(history: list):
|
|
| 141 |
messages.append({"role": h.role, "content": h.content})
|
| 142 |
return messages
|
| 143 |
|
| 144 |
-
def load_model(model_names):
|
| 145 |
-
"""์ ํ๋ ๋ชจ๋ธ ์ด๋ฆ์ ๋ฐ๋ผ ๋ชจ๋ธ ๋ก๋ (A100์ ์ต์ ํ๋ ์ค์ ์ฌ์ฉ)"""
|
| 146 |
-
global pipe, current_model_name, loading_in_progress
|
| 147 |
-
|
| 148 |
-
# ์ด๋ฏธ ๋ก๋ฉ ์ค์ธ ๊ฒฝ์ฐ
|
| 149 |
-
if loading_in_progress:
|
| 150 |
-
return "๋ค๋ฅธ ๋ชจ๋ธ์ด ์ด๋ฏธ ๋ก๋ ์ค์
๋๋ค. ์ ์ ๊ธฐ๋ค๋ ค์ฃผ์ธ์."
|
| 151 |
-
|
| 152 |
-
loading_in_progress = True
|
| 153 |
-
status_messages = []
|
| 154 |
-
|
| 155 |
-
try:
|
| 156 |
-
# ๊ธฐ์กด ๋ชจ๋ธ ์ ๋ฆฌ
|
| 157 |
-
clear_gpu_memory()
|
| 158 |
-
|
| 159 |
-
# ๋ชจ๋ธ์ด ์ ํ๋์ง ์์์ ๊ฒฝ์ฐ ๊ธฐ๋ณธ๊ฐ ์ง์
|
| 160 |
-
if not model_names:
|
| 161 |
-
model_name = DEFAULT_MODEL_KEY
|
| 162 |
-
else:
|
| 163 |
-
# ์ฒซ ๋ฒ์งธ ์ ํ๋ ๋ชจ๋ธ ์ฌ์ฉ
|
| 164 |
-
model_name = model_names[0]
|
| 165 |
-
|
| 166 |
-
# ๋ชจ๋ธ ํฌ๊ธฐ ์นดํ
๊ณ ๋ฆฌ ํ์ธ
|
| 167 |
-
size_category = get_model_size_category(model_name)
|
| 168 |
-
config = MODEL_CONFIG[size_category]
|
| 169 |
-
|
| 170 |
-
# ๋ก๋ฉ ์ํ ์
๋ฐ์ดํธ
|
| 171 |
-
status_messages.append(f"๋ชจ๋ธ '{model_name}' ๋ก๋ ์ค... (ํฌ๊ธฐ: {size_category})")
|
| 172 |
-
|
| 173 |
-
# ๋ชจ๋ธ ๋ก๋ (ํฌ๊ธฐ์ ๋ฐ๋ผ ์ต์ ํ๋ ์ค์ ์ ์ฉ)
|
| 174 |
-
# HF_TOKEN ํ๊ฒฝ ๋ณ์ ํ์ธ
|
| 175 |
-
hf_token = os.getenv("HF_TOKEN")
|
| 176 |
-
# ๊ณตํต ๋งค๊ฐ๋ณ์
|
| 177 |
-
common_params = {
|
| 178 |
-
"token": hf_token, # ์ ๊ทผ ์ ํ ๋ชจ๋ธ์ ์ํ ํ ํฐ
|
| 179 |
-
"trust_remote_code": True,
|
| 180 |
-
}
|
| 181 |
-
|
| 182 |
-
# BitsAndBytes ์ฌ์ฉ ์ฌ๋ถ ํ์ธ
|
| 183 |
-
try:
|
| 184 |
-
import bitsandbytes
|
| 185 |
-
has_bitsandbytes = True
|
| 186 |
-
except ImportError:
|
| 187 |
-
has_bitsandbytes = False
|
| 188 |
-
status_messages.append("BitsAndBytes ๋ผ์ด๋ธ๋ฌ๋ฆฌ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค. ์์ํ ์์ด ๋ก๋ํฉ๋๋ค.")
|
| 189 |
-
|
| 190 |
-
# ์๊ฐ ์ ํ ์ค์ (๋ชจ๋ธ ํฌ๊ธฐ์ ๋ฐ๋ผ ๋ค๋ฅด๊ฒ)
|
| 191 |
-
if size_category == "small":
|
| 192 |
-
load_timeout = 180 # 3๋ถ
|
| 193 |
-
elif size_category == "medium":
|
| 194 |
-
load_timeout = 300 # 5๋ถ
|
| 195 |
-
else:
|
| 196 |
-
load_timeout = 600 # 10๋ถ
|
| 197 |
-
|
| 198 |
-
# ๋ก๋ฉ ์์ ์๊ฐ
|
| 199 |
-
start_time = time.time()
|
| 200 |
-
|
| 201 |
-
# ์์ํ ์ค์ ์ด ํ์ํ๊ณ BitsAndBytes๋ฅผ ์ฌ์ฉํ ์ ์๋ ๊ฒฝ์ฐ
|
| 202 |
-
if config["quantization"] and has_bitsandbytes:
|
| 203 |
-
# ์์ํ ์ ์ฉ
|
| 204 |
-
from transformers import BitsAndBytesConfig
|
| 205 |
-
quantization_config = BitsAndBytesConfig(
|
| 206 |
-
load_in_4bit=config["quantization"] == "4bit",
|
| 207 |
-
bnb_4bit_compute_dtype=DTYPE
|
| 208 |
-
)
|
| 209 |
-
|
| 210 |
-
status_messages.append(f"๋ชจ๋ธ '{model_name}' ๋ก๋ ์ค... (์์ํ ์ ์ฉ)")
|
| 211 |
-
|
| 212 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 213 |
-
model_name,
|
| 214 |
-
device_map="auto",
|
| 215 |
-
max_memory=config["max_memory"],
|
| 216 |
-
torch_dtype=DTYPE,
|
| 217 |
-
quantization_config=quantization_config,
|
| 218 |
-
offload_folder="offload" if config["offload"] else None,
|
| 219 |
-
**common_params
|
| 220 |
-
)
|
| 221 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, **common_params)
|
| 222 |
-
|
| 223 |
-
pipe = pipeline(
|
| 224 |
-
"text-generation",
|
| 225 |
-
model=model,
|
| 226 |
-
tokenizer=tokenizer,
|
| 227 |
-
torch_dtype=DTYPE,
|
| 228 |
-
device_map="auto"
|
| 229 |
-
)
|
| 230 |
-
else:
|
| 231 |
-
# ์์ํ ์์ด ๋ก๋
|
| 232 |
-
status_messages.append(f"๋ชจ๋ธ '{model_name}' ๋ก๋ ์ค... (ํ์ค ๋ฐฉ์)")
|
| 233 |
-
|
| 234 |
-
pipe = pipeline(
|
| 235 |
-
"text-generation",
|
| 236 |
-
model=model_name,
|
| 237 |
-
device_map="auto",
|
| 238 |
-
torch_dtype=DTYPE,
|
| 239 |
-
**common_params
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
# ์๊ฐ ์ ํ ์ด๊ณผ ํ์ธ
|
| 243 |
-
elapsed_time = time.time() - start_time
|
| 244 |
-
if elapsed_time > load_timeout:
|
| 245 |
-
clear_gpu_memory()
|
| 246 |
-
loading_in_progress = False
|
| 247 |
-
return f"๋ชจ๋ธ ๋ก๋ ์๊ฐ ์ด๊ณผ: {load_timeout}์ด๊ฐ ์ง๋ฌ์ต๋๋ค. ๋ค์ ์๋ํ์ธ์."
|
| 248 |
-
|
| 249 |
-
current_model_name = model_name
|
| 250 |
-
loading_in_progress = False
|
| 251 |
-
return f"๋ชจ๋ธ '{model_name}'์ด(๊ฐ) ์ฑ๊ณต์ ์ผ๋ก ๋ก๋๋์์ต๋๋ค. (์ต์ ํ: {size_category}, ์์์๊ฐ: {elapsed_time:.1f}์ด)"
|
| 252 |
-
|
| 253 |
-
except Exception as e:
|
| 254 |
-
loading_in_progress = False
|
| 255 |
-
error_msg = f"๋ชจ๋ธ ๋ก๋ ์คํจ: {str(e)}"
|
| 256 |
-
print(f"์ค๋ฅ: {error_msg}")
|
| 257 |
-
return error_msg
|
| 258 |
-
finally:
|
| 259 |
-
loading_in_progress = False
|
| 260 |
|
| 261 |
@spaces.GPU
|
| 262 |
def bot(
|
|
@@ -267,187 +83,71 @@ def bot(
|
|
| 267 |
temperature: float,
|
| 268 |
):
|
| 269 |
"""๋ชจ๋ธ์ด ์ง๋ฌธ์ ๋ต๋ณํ๋๋ก ํ๊ธฐ"""
|
| 270 |
-
global pipe, current_model_name
|
| 271 |
-
|
| 272 |
-
# ๋ชจ๋ธ์ด ๋ก๋๋์ง ์์๋ค๋ฉด ์ค๋ฅ ๋ฉ์์ง ํ์
|
| 273 |
-
if pipe is None:
|
| 274 |
-
history.append(
|
| 275 |
-
gr.ChatMessage(
|
| 276 |
-
role="assistant",
|
| 277 |
-
content="๋ชจ๋ธ์ด ๋ก๋๋์ง ์์์ต๋๋ค. ํ๋ ์ด์์ ๋ชจ๋ธ์ ์ ํํ๊ณ '๋ชจ๋ธ ๋ก๋' ๋ฒํผ์ ํด๋ฆญํด ์ฃผ์ธ์.",
|
| 278 |
-
)
|
| 279 |
-
)
|
| 280 |
-
yield history
|
| 281 |
-
return
|
| 282 |
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
max_num_tokens = min(max_num_tokens, 1000)
|
| 290 |
-
final_num_tokens = min(final_num_tokens, 1500)
|
| 291 |
-
|
| 292 |
-
# ๋์ค์ ์ค๋ ๋์์ ํ ํฐ์ ์คํธ๋ฆผ์ผ๋ก ๊ฐ์ ธ์ค๊ธฐ ์ํจ
|
| 293 |
-
streamer = transformers.TextIteratorStreamer(
|
| 294 |
-
pipe.tokenizer,
|
| 295 |
-
skip_special_tokens=True,
|
| 296 |
-
skip_prompt=True,
|
| 297 |
-
)
|
| 298 |
|
| 299 |
-
|
| 300 |
-
|
| 301 |
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
)
|
| 309 |
)
|
|
|
|
| 310 |
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
def timeout_handler(signum, frame):
|
| 319 |
-
raise TimeoutError("์์ฒญ ์ฒ๋ฆฌ ์๊ฐ์ด ์ด๊ณผ๋์์ต๋๋ค.")
|
| 320 |
-
|
| 321 |
-
# ๊ฐ ๋จ๊ณ๋ง๋ค ์ต๋ 120์ด ํ์์์ ์ค์
|
| 322 |
-
timeout_seconds = 120
|
| 323 |
-
|
| 324 |
-
for i, prepend in enumerate(rethink_prepends):
|
| 325 |
-
if i > 0:
|
| 326 |
-
messages[-1]["content"] += "\n\n"
|
| 327 |
-
messages[-1]["content"] += prepend.format(question=question)
|
| 328 |
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
history[-1].content +=
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
history.append(gr.ChatMessage(role="assistant", content=""))
|
| 356 |
-
|
| 357 |
-
# ํ์์์ ์ค์ (Unix ์์คํ
์์๋ง ์๋)
|
| 358 |
-
try:
|
| 359 |
-
if hasattr(signal, 'SIGALRM'):
|
| 360 |
-
signal.signal(signal.SIGALRM, timeout_handler)
|
| 361 |
-
signal.alarm(timeout_seconds)
|
| 362 |
-
|
| 363 |
-
# ํ ํฐ ์คํธ๋ฆฌ๋ฐ
|
| 364 |
-
token_count = 0
|
| 365 |
-
for token in streamer:
|
| 366 |
-
history[-1].content += token
|
| 367 |
-
history[-1].content = reformat_math(history[-1].content)
|
| 368 |
-
token_count += 1
|
| 369 |
-
|
| 370 |
-
# 10๊ฐ ํ ํฐ๋ง๋ค yield (UI ์๋ต์ฑ ํฅ์)
|
| 371 |
-
if token_count % 10 == 0:
|
| 372 |
-
yield history
|
| 373 |
-
|
| 374 |
-
# ๋จ์ ๋ด์ฉ yield
|
| 375 |
-
yield history
|
| 376 |
-
|
| 377 |
-
# ํ์์์ ํด์
|
| 378 |
-
if hasattr(signal, 'SIGALRM'):
|
| 379 |
-
signal.alarm(0)
|
| 380 |
-
|
| 381 |
-
except TimeoutError:
|
| 382 |
-
if hasattr(signal, 'SIGALRM'):
|
| 383 |
-
signal.alarm(0)
|
| 384 |
-
history[-1].content += "\n\nโ ๏ธ ์๋ต ์์ฑ ์๊ฐ์ด ์ด๊ณผ๋์์ต๋๋ค. ๋ค์ ๋จ๊ณ๋ก ์งํํฉ๋๋ค."
|
| 385 |
-
yield history
|
| 386 |
-
continue
|
| 387 |
-
|
| 388 |
-
# ์ต๋ 30์ด ๋๊ธฐ ํ ๋ค์ ๋จ๊ณ๋ก ์งํ
|
| 389 |
-
join_start_time = time.time()
|
| 390 |
-
while t.is_alive() and (time.time() - join_start_time) < 30:
|
| 391 |
-
t.join(1) # 1์ด๋ง๋ค ํ์ธ
|
| 392 |
-
|
| 393 |
-
# ์ค๋ ๋๊ฐ ์ฌ์ ํ ์คํ ์ค์ด๋ฉด ๊ฐ์ ์งํ
|
| 394 |
-
if t.is_alive():
|
| 395 |
-
history[-1].content += "\n\nโ ๏ธ ์๋ต ์์ฑ์ด ์์๋ณด๋ค ์ค๋ ๊ฑธ๋ฆฝ๋๋ค. ๋ค์ ๋จ๊ณ๋ก ์งํํฉ๋๋ค."
|
| 396 |
-
yield history
|
| 397 |
-
|
| 398 |
-
# ๋ํ ๋ชจ๋ธ์ธ ๊ฒฝ์ฐ ๊ฐ ๋จ๊ณ ํ ๋ถ๋ถ์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
| 399 |
-
if size_category == "large" and torch.cuda.is_available():
|
| 400 |
-
torch.cuda.empty_cache()
|
| 401 |
-
|
| 402 |
-
except Exception as e:
|
| 403 |
-
# ์ค๋ฅ ๋ฐ์์ ์ฌ์ฉ์์๊ฒ ์๋ฆผ
|
| 404 |
-
import traceback
|
| 405 |
-
error_msg = f"\n\nโ ๏ธ ์ฒ๋ฆฌ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}\n{traceback.format_exc()}"
|
| 406 |
-
|
| 407 |
-
if len(history) > 0 and isinstance(history[-1], gr.ChatMessage) and history[-1].role == "assistant":
|
| 408 |
-
history[-1].content += error_msg
|
| 409 |
-
else:
|
| 410 |
-
history.append(gr.ChatMessage(role="assistant", content=error_msg))
|
| 411 |
-
|
| 412 |
-
yield history
|
| 413 |
|
| 414 |
yield history
|
| 415 |
|
| 416 |
|
| 417 |
-
|
| 418 |
-
def get_gpu_info():
|
| 419 |
-
if not torch.cuda.is_available():
|
| 420 |
-
return "GPU๋ฅผ ์ฌ์ฉํ ์ ์์ต๋๋ค."
|
| 421 |
-
|
| 422 |
-
gpu_info = []
|
| 423 |
-
for i in range(torch.cuda.device_count()):
|
| 424 |
-
gpu_name = torch.cuda.get_device_name(i)
|
| 425 |
-
total_memory = torch.cuda.get_device_properties(i).total_memory / 1024**3
|
| 426 |
-
gpu_info.append(f"GPU {i}: {gpu_name} ({total_memory:.1f} GB)")
|
| 427 |
-
|
| 428 |
-
return "\n".join(gpu_info)
|
| 429 |
-
|
| 430 |
-
# ๋น๋๊ธฐ ๋์ ๋๊ธฐ ๋ฐฉ์์ผ๋ก ๋ชจ๋ธ ์๋ ๋ก๋ (๊ฐ์ํ)
|
| 431 |
-
def load_default_model():
|
| 432 |
-
model_key = DEFAULT_MODEL_KEY
|
| 433 |
-
return load_model([model_key])
|
| 434 |
-
|
| 435 |
-
# Gradio ์ธํฐํ์ด์ค
|
| 436 |
-
with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Service") as demo:
|
| 437 |
-
# ์๋จ์ ํ์ดํ๊ณผ ์ค๋ช
์ถ๊ฐ
|
| 438 |
-
gr.Markdown("""
|
| 439 |
-
# ThinkFlow
|
| 440 |
-
## A thought amplification service that implants step-by-step reasoning abilities into LLMs without model modification
|
| 441 |
-
""")
|
| 442 |
-
|
| 443 |
with gr.Row(scale=1):
|
| 444 |
with gr.Column(scale=5):
|
| 445 |
-
|
| 446 |
chatbot = gr.Chatbot(
|
| 447 |
scale=1,
|
| 448 |
type="messages",
|
| 449 |
latex_delimiters=latex_delimiters,
|
| 450 |
-
height=600,
|
| 451 |
)
|
| 452 |
msg = gr.Textbox(
|
| 453 |
submit_btn=True,
|
|
@@ -456,68 +156,27 @@ with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Servi
|
|
| 456 |
placeholder="์ฌ๊ธฐ์ ์ง๋ฌธ์ ์
๋ ฅํ์ธ์.",
|
| 457 |
autofocus=True,
|
| 458 |
)
|
| 459 |
-
|
| 460 |
with gr.Column(scale=1):
|
| 461 |
-
# ํ๋์จ์ด ์ ๋ณด ํ์
|
| 462 |
-
gpu_info = gr.Markdown(f"**์ฌ์ฉ ๊ฐ๋ฅํ ํ๋์จ์ด:**\n{get_gpu_info()}")
|
| 463 |
-
|
| 464 |
-
# ๋ชจ๋ธ ์ ํ ์น์
์ถ๊ฐ
|
| 465 |
-
gr.Markdown("""## ๋ชจ๋ธ ์ ํ""")
|
| 466 |
-
model_selector = gr.Radio(
|
| 467 |
-
choices=list(available_models.values()),
|
| 468 |
-
value=DEFAULT_MODEL_VALUE,
|
| 469 |
-
label="์ฌ์ฉํ LLM ๋ชจ๋ธ ์ ํ",
|
| 470 |
-
)
|
| 471 |
-
|
| 472 |
-
# ๋ชจ๋ธ ๋ก๋ ๋ฒํผ
|
| 473 |
-
load_model_btn = gr.Button("๋ชจ๋ธ ๋ก๋", variant="primary")
|
| 474 |
-
model_status = gr.Textbox(label="๋ชจ๋ธ ์ํ", interactive=False, value="์์ ์ ์์ ๋ชจ๋ธ์ ์๋์ผ๋ก ๋ก๋ํฉ๋๋ค...")
|
| 475 |
-
|
| 476 |
-
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ๋ฒํผ
|
| 477 |
-
clear_memory_btn = gr.Button("GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ", variant="secondary")
|
| 478 |
-
|
| 479 |
gr.Markdown("""## ๋งค๊ฐ๋ณ์ ์กฐ์ """)
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
# ์์ ์ ์๋์ผ๋ก ๋ชจ๋ธ ๋ก๋ - ์ด์ ๋๊ธฐ์ ์ผ๋ก ์ฒ๋ฆฌ
|
| 501 |
-
demo.load(load_default_model, [], [model_status])
|
| 502 |
-
|
| 503 |
-
# ์ ํ๋ ๋ชจ๋ธ ๋ก๋ ์ด๋ฒคํธ ์ฐ๊ฒฐ
|
| 504 |
-
def get_model_names(selected_model):
|
| 505 |
-
# ํ์ ์ด๋ฆ์์ ์๋ ๋ชจ๋ธ ์ด๋ฆ์ผ๋ก ๋ณํ
|
| 506 |
-
inverse_map = {v: k for k, v in available_models.items()}
|
| 507 |
-
return [inverse_map[selected_model]] if selected_model else []
|
| 508 |
-
|
| 509 |
-
load_model_btn.click(
|
| 510 |
-
lambda selected: load_model(get_model_names(selected)),
|
| 511 |
-
inputs=[model_selector],
|
| 512 |
-
outputs=[model_status]
|
| 513 |
-
)
|
| 514 |
-
|
| 515 |
-
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ์ด๋ฒคํธ ์ฐ๊ฒฐ
|
| 516 |
-
clear_memory_btn.click(
|
| 517 |
-
lambda: (clear_gpu_memory(), "GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ์ ๋ฆฌ๋์์ต๋๋ค."),
|
| 518 |
-
inputs=[],
|
| 519 |
-
outputs=[model_status]
|
| 520 |
-
)
|
| 521 |
|
| 522 |
# ์ฌ์ฉ์๊ฐ ๋ฉ์์ง๋ฅผ ์ ์ถํ๋ฉด ๋ด์ด ์๋ตํฉ๋๋ค
|
| 523 |
msg.submit(
|
|
@@ -537,19 +196,4 @@ with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Servi
|
|
| 537 |
)
|
| 538 |
|
| 539 |
if __name__ == "__main__":
|
| 540 |
-
|
| 541 |
-
print(f"GPU ์ฌ์ฉ ๊ฐ๋ฅ: {torch.cuda.is_available()}")
|
| 542 |
-
if torch.cuda.is_available():
|
| 543 |
-
print(f"์ฌ์ฉ ๊ฐ๋ฅํ GPU ๊ฐ์: {torch.cuda.device_count()}")
|
| 544 |
-
print(f"ํ์ฌ GPU: {torch.cuda.current_device()}")
|
| 545 |
-
print(f"GPU ์ด๋ฆ: {torch.cuda.get_device_name(0)}")
|
| 546 |
-
|
| 547 |
-
# HF_TOKEN ํ๊ฒฝ ๋ณ์ ํ์ธ
|
| 548 |
-
hf_token = os.getenv("HF_TOKEN")
|
| 549 |
-
if hf_token:
|
| 550 |
-
print("HF_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ด ์์ต๋๋ค.")
|
| 551 |
-
else:
|
| 552 |
-
print("๊ฒฝ๊ณ : HF_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ง ์์์ต๋๋ค. ์ ํ๋ ๋ชจ๋ธ์ ์ ๊ทผํ ์ ์์ต๋๋ค.")
|
| 553 |
-
|
| 554 |
-
# ํ ์ฌ์ฉ ๋ฐ ์ฑ ์คํ
|
| 555 |
-
demo.queue(max_size=10).launch()
|
|
|
|
| 1 |
import re
|
| 2 |
import threading
|
| 3 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
import transformers
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
|
| 9 |
+
# ๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๋ก๋ฉ
|
| 10 |
+
model_name = "Qwen/Qwen2-1.5B-Instruct"
|
| 11 |
+
if gr.NO_RELOAD:
|
| 12 |
+
pipe = pipeline(
|
| 13 |
+
"text-generation",
|
| 14 |
+
model=model_name,
|
| 15 |
+
device_map="auto",
|
| 16 |
+
torch_dtype="auto",
|
| 17 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# ์ต์ข
๋ต๋ณ์ ๊ฐ์งํ๊ธฐ ์ํ ๋ง์ปค
|
| 20 |
ANSWER_MARKER = "**๋ต๋ณ**"
|
|
|
|
| 34 |
f"\n{ANSWER_MARKER}\n",
|
| 35 |
]
|
| 36 |
|
| 37 |
+
|
| 38 |
# ์์ ํ์ ๋ฌธ์ ํด๊ฒฐ์ ์ํ ์ค์
|
| 39 |
latex_delimiters = [
|
| 40 |
{"left": "$$", "right": "$$", "display": True},
|
| 41 |
{"left": "$", "right": "$", "display": False},
|
| 42 |
]
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def reformat_math(text):
|
| 46 |
+
"""Gradio ๊ตฌ๋ฌธ(Katex)์ ์ฌ์ฉํ๋๋ก MathJax ๊ตฌ๋ถ ๊ธฐํธ ์์ .
|
| 47 |
+
์ด๊ฒ์ Gradio์์ ์ํ ๊ณต์์ ํ์ํ๊ธฐ ์ํ ์์ ํด๊ฒฐ์ฑ
์
๋๋ค. ํ์ฌ๋ก์๋
|
| 48 |
+
๋ค๋ฅธ latex_delimiters๋ฅผ ์ฌ์ฉํ์ฌ ์์๋๋ก ์๋ํ๊ฒ ํ๋ ๋ฐฉ๋ฒ์ ์ฐพ์ง ๋ชปํ์ต๋๋ค...
|
| 49 |
+
"""
|
| 50 |
text = re.sub(r"\\\[\s*(.*?)\s*\\\]", r"$$\1$$", text, flags=re.DOTALL)
|
| 51 |
text = re.sub(r"\\\(\s*(.*?)\s*\\\)", r"$\1$", text, flags=re.DOTALL)
|
| 52 |
return text
|
| 53 |
|
| 54 |
+
|
| 55 |
def user_input(message, history: list):
|
| 56 |
"""์ฌ์ฉ์ ์
๋ ฅ์ ํ์คํ ๋ฆฌ์ ์ถ๊ฐํ๊ณ ์
๋ ฅ ํ
์คํธ ์์ ๋น์ฐ๊ธฐ"""
|
| 57 |
return "", history + [
|
| 58 |
gr.ChatMessage(role="user", content=message.replace(ANSWER_MARKER, ""))
|
| 59 |
]
|
| 60 |
|
| 61 |
+
|
| 62 |
def rebuild_messages(history: list):
|
| 63 |
"""์ค๊ฐ ์๊ฐ ๊ณผ์ ์์ด ๋ชจ๋ธ์ด ์ฌ์ฉํ ํ์คํ ๋ฆฌ์์ ๋ฉ์์ง ์ฌ๊ตฌ์ฑ"""
|
| 64 |
messages = []
|
|
|
|
| 73 |
messages.append({"role": h.role, "content": h.content})
|
| 74 |
return messages
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
@spaces.GPU
|
| 78 |
def bot(
|
|
|
|
| 83 |
temperature: float,
|
| 84 |
):
|
| 85 |
"""๋ชจ๋ธ์ด ์ง๋ฌธ์ ๋ต๋ณํ๋๋ก ํ๊ธฐ"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
# ๋์ค์ ์ค๋ ๋์์ ํ ํฐ์ ์คํธ๋ฆผ์ผ๋ก ๊ฐ์ ธ์ค๊ธฐ ์ํจ
|
| 88 |
+
streamer = transformers.TextIteratorStreamer(
|
| 89 |
+
pipe.tokenizer, # pyright: ignore
|
| 90 |
+
skip_special_tokens=True,
|
| 91 |
+
skip_prompt=True,
|
| 92 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
# ํ์ํ ๊ฒฝ์ฐ ์ถ๋ก ์ ์ง๋ฌธ์ ๋ค์ ์ฝ์
ํ๊ธฐ ์ํจ
|
| 95 |
+
question = history[-1]["content"]
|
| 96 |
|
| 97 |
+
# ๋ณด์กฐ์ ๋ฉ์์ง ์ค๋น
|
| 98 |
+
history.append(
|
| 99 |
+
gr.ChatMessage(
|
| 100 |
+
role="assistant",
|
| 101 |
+
content=str(""),
|
| 102 |
+
metadata={"title": "๐ง ์๊ฐ ์ค...", "status": "pending"},
|
|
|
|
| 103 |
)
|
| 104 |
+
)
|
| 105 |
|
| 106 |
+
# ํ์ฌ ์ฑํ
์ ํ์๋ ์ถ๋ก ๊ณผ์
|
| 107 |
+
messages = rebuild_messages(history)
|
| 108 |
+
for i, prepend in enumerate(rethink_prepends):
|
| 109 |
+
if i > 0:
|
| 110 |
+
messages[-1]["content"] += "\n\n"
|
| 111 |
+
messages[-1]["content"] += prepend.format(question=question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
num_tokens = int(
|
| 114 |
+
max_num_tokens if ANSWER_MARKER not in prepend else final_num_tokens
|
| 115 |
+
)
|
| 116 |
+
t = threading.Thread(
|
| 117 |
+
target=pipe,
|
| 118 |
+
args=(messages,),
|
| 119 |
+
kwargs=dict(
|
| 120 |
+
max_new_tokens=num_tokens,
|
| 121 |
+
streamer=streamer,
|
| 122 |
+
do_sample=do_sample,
|
| 123 |
+
temperature=temperature,
|
| 124 |
+
),
|
| 125 |
+
)
|
| 126 |
+
t.start()
|
| 127 |
+
|
| 128 |
+
# ์ ๋ด์ฉ์ผ๋ก ํ์คํ ๋ฆฌ ์ฌ๊ตฌ์ฑ
|
| 129 |
+
history[-1].content += prepend.format(question=question)
|
| 130 |
+
if ANSWER_MARKER in prepend:
|
| 131 |
+
history[-1].metadata = {"title": "๐ญ ์ฌ๊ณ ๊ณผ์ ", "status": "done"}
|
| 132 |
+
# ์๊ฐ ์ข
๋ฃ, ์ด์ ๋ต๋ณ์
๋๋ค (์ค๊ฐ ๋จ๊ณ์ ๋ํ ๋ฉํ๋ฐ์ดํฐ ์์)
|
| 133 |
+
history.append(gr.ChatMessage(role="assistant", content=""))
|
| 134 |
+
for token in streamer:
|
| 135 |
+
history[-1].content += token
|
| 136 |
+
history[-1].content = reformat_math(history[-1].content)
|
| 137 |
+
yield history
|
| 138 |
+
t.join()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
yield history
|
| 141 |
|
| 142 |
|
| 143 |
+
with gr.Blocks(fill_height=True, title="๋ชจ๋ LLM ๋ชจ๋ธ์ ์ถ๋ก ๋ฅ๋ ฅ ๋ถ์ฌํ๊ธฐ") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
with gr.Row(scale=1):
|
| 145 |
with gr.Column(scale=5):
|
| 146 |
+
|
| 147 |
chatbot = gr.Chatbot(
|
| 148 |
scale=1,
|
| 149 |
type="messages",
|
| 150 |
latex_delimiters=latex_delimiters,
|
|
|
|
| 151 |
)
|
| 152 |
msg = gr.Textbox(
|
| 153 |
submit_btn=True,
|
|
|
|
| 156 |
placeholder="์ฌ๊ธฐ์ ์ง๋ฌธ์ ์
๋ ฅํ์ธ์.",
|
| 157 |
autofocus=True,
|
| 158 |
)
|
|
|
|
| 159 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
gr.Markdown("""## ๋งค๊ฐ๋ณ์ ์กฐ์ """)
|
| 161 |
+
num_tokens = gr.Slider(
|
| 162 |
+
50,
|
| 163 |
+
4000,
|
| 164 |
+
2000,
|
| 165 |
+
step=1,
|
| 166 |
+
label="์ถ๋ก ๋จ๊ณ๋น ์ต๋ ํ ํฐ ์",
|
| 167 |
+
interactive=True,
|
| 168 |
+
)
|
| 169 |
+
final_num_tokens = gr.Slider(
|
| 170 |
+
50,
|
| 171 |
+
4000,
|
| 172 |
+
2000,
|
| 173 |
+
step=1,
|
| 174 |
+
label="์ต์ข
๋ต๋ณ์ ์ต๋ ํ ํฐ ์",
|
| 175 |
+
interactive=True,
|
| 176 |
+
)
|
| 177 |
+
do_sample = gr.Checkbox(True, label="์ํ๋ง ์ฌ์ฉ")
|
| 178 |
+
temperature = gr.Slider(0.1, 1.0, 0.7, step=0.1, label="์จ๋")
|
| 179 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
# ์ฌ์ฉ์๊ฐ ๋ฉ์์ง๋ฅผ ์ ์ถํ๋ฉด ๋ด์ด ์๋ตํฉ๋๋ค
|
| 182 |
msg.submit(
|
|
|
|
| 196 |
)
|
| 197 |
|
| 198 |
if __name__ == "__main__":
|
| 199 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|