Spaces:
Sleeping
Sleeping
har1zarD
commited on
Commit
·
4a532ec
0
Parent(s):
commit
Browse files- .dockerignore +18 -0
- .env.example +8 -0
- .gitignore +41 -0
- DEPLOYMENT.md +451 -0
- Dockerfile +30 -0
- README.md +310 -0
- app.py +643 -0
- requirements.txt +20 -0
.dockerignore
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.pyc
|
| 3 |
+
*.pyo
|
| 4 |
+
*.pyd
|
| 5 |
+
.Python
|
| 6 |
+
*.so
|
| 7 |
+
*.egg
|
| 8 |
+
*.egg-info/
|
| 9 |
+
dist/
|
| 10 |
+
build/
|
| 11 |
+
.env
|
| 12 |
+
.venv
|
| 13 |
+
venv/
|
| 14 |
+
ENV/
|
| 15 |
+
start_server.py
|
| 16 |
+
*.md
|
| 17 |
+
.git/
|
| 18 |
+
.gitignore
|
.env.example
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Server Configuration
|
| 2 |
+
PORT=8000
|
| 3 |
+
HOST=0.0.0.0
|
| 4 |
+
|
| 5 |
+
# API Keys (optional, already in code)
|
| 6 |
+
USDA_API_KEY=USDA_API_KEY
|
| 7 |
+
NUTRITIONIX_APP_ID=NUTRITIONIX_APP_ID
|
| 8 |
+
NUTRITIONIX_API_KEY=NUTRITIONIX_API_KEY
|
.gitignore
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
*.egg
|
| 8 |
+
*.egg-info/
|
| 9 |
+
dist/
|
| 10 |
+
build/
|
| 11 |
+
*.whl
|
| 12 |
+
|
| 13 |
+
# Environment
|
| 14 |
+
.env
|
| 15 |
+
.venv
|
| 16 |
+
venv/
|
| 17 |
+
ENV/
|
| 18 |
+
env/
|
| 19 |
+
|
| 20 |
+
# IDE
|
| 21 |
+
.vscode/
|
| 22 |
+
.idea/
|
| 23 |
+
*.swp
|
| 24 |
+
*.swo
|
| 25 |
+
*~
|
| 26 |
+
|
| 27 |
+
# OS
|
| 28 |
+
.DS_Store
|
| 29 |
+
Thumbs.db
|
| 30 |
+
|
| 31 |
+
# Logs
|
| 32 |
+
*.log
|
| 33 |
+
|
| 34 |
+
# Testing
|
| 35 |
+
.pytest_cache/
|
| 36 |
+
.coverage
|
| 37 |
+
htmlcov/
|
| 38 |
+
|
| 39 |
+
# Model cache (Hugging Face)
|
| 40 |
+
models/
|
| 41 |
+
.cache/
|
DEPLOYMENT.md
ADDED
|
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚀 Food Recognition Backend - Deployment Guide
|
| 2 |
+
|
| 3 |
+
Complete guide for deploying the food recognition API for **FREE** on various platforms.
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## 📋 Table of Contents
|
| 8 |
+
1. [Quick Start](#quick-start)
|
| 9 |
+
2. [Free Hosting Options](#free-hosting-options)
|
| 10 |
+
3. [Deployment Instructions](#deployment-instructions)
|
| 11 |
+
4. [Environment Variables](#environment-variables)
|
| 12 |
+
5. [Testing Your Deployment](#testing-your-deployment)
|
| 13 |
+
6. [Integration with Next.js](#integration-with-nextjs)
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## 🎯 Quick Start
|
| 18 |
+
|
| 19 |
+
Before deploying, ensure you have:
|
| 20 |
+
- ✅ Python 3.11+
|
| 21 |
+
- ✅ Git repository (GitHub/GitLab)
|
| 22 |
+
- ✅ Docker installed (for local testing)
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
## 💰 Free Hosting Options
|
| 27 |
+
|
| 28 |
+
### 🥇 **Option 1: Hugging Face Spaces** (RECOMMENDED)
|
| 29 |
+
- **Cost**: 100% FREE
|
| 30 |
+
- **Specs**: 2 vCPU, 16GB RAM
|
| 31 |
+
- **Limits**: No request limits
|
| 32 |
+
- **Cold Starts**: ~30-60s first request
|
| 33 |
+
- **Best For**: ML models, unlimited testing
|
| 34 |
+
|
| 35 |
+
### 🥈 **Option 2: Render**
|
| 36 |
+
- **Cost**: FREE tier available
|
| 37 |
+
- **Specs**: 512MB RAM, shared CPU
|
| 38 |
+
- **Limits**: Spins down after 15min inactivity
|
| 39 |
+
- **Cold Starts**: ~30-60s after sleep
|
| 40 |
+
- **Best For**: Simple APIs with moderate usage
|
| 41 |
+
|
| 42 |
+
### 🥉 **Option 3: Railway** (Limited Free)
|
| 43 |
+
- **Cost**: $5 free credit/month
|
| 44 |
+
- **Specs**: ~500 hours/month
|
| 45 |
+
- **Limits**: Credit-based
|
| 46 |
+
- **Best For**: Development/staging
|
| 47 |
+
|
| 48 |
+
### ⚠️ **NOT Recommended (Too Restrictive)**
|
| 49 |
+
- ❌ Vercel/Netlify - 50MB limit (model is 500MB+)
|
| 50 |
+
- ❌ Heroku - No free tier anymore
|
| 51 |
+
- ❌ AWS Lambda - 250MB deployment limit
|
| 52 |
+
|
| 53 |
+
---
|
| 54 |
+
|
| 55 |
+
## 📦 Deployment Instructions
|
| 56 |
+
|
| 57 |
+
### 🟢 Deploy to Hugging Face Spaces (BEST FREE OPTION)
|
| 58 |
+
|
| 59 |
+
**Step 1: Create Account**
|
| 60 |
+
```bash
|
| 61 |
+
# Visit https://huggingface.co/join
|
| 62 |
+
# Create free account
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
**Step 2: Create New Space**
|
| 66 |
+
1. Go to https://huggingface.co/new-space
|
| 67 |
+
2. **Name**: `food-recognition-api` (or your choice)
|
| 68 |
+
3. **License**: MIT
|
| 69 |
+
4. **SDK**: Docker
|
| 70 |
+
5. **Hardware**: CPU (basic) - FREE ✅
|
| 71 |
+
6. Click **Create Space**
|
| 72 |
+
|
| 73 |
+
**Step 3: Prepare Files**
|
| 74 |
+
|
| 75 |
+
Create `Dockerfile` (already included):
|
| 76 |
+
```dockerfile
|
| 77 |
+
FROM python:3.11-slim
|
| 78 |
+
WORKDIR /app
|
| 79 |
+
RUN apt-get update && apt-get install -y gcc g++ && rm -rf /var/lib/apt/lists/*
|
| 80 |
+
COPY requirements.txt .
|
| 81 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 82 |
+
COPY app.py .
|
| 83 |
+
EXPOSE 8000
|
| 84 |
+
ENV PYTHONUNBUFFERED=1
|
| 85 |
+
ENV PORT=8000
|
| 86 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000", "--workers", "1"]
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
**Step 4: Push to Space**
|
| 90 |
+
|
| 91 |
+
Option A: Web UI
|
| 92 |
+
```bash
|
| 93 |
+
# Zip your files: app.py, requirements.txt, Dockerfile
|
| 94 |
+
# Upload via Hugging Face Space UI
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
Option B: Git (recommended)
|
| 98 |
+
```bash
|
| 99 |
+
# Clone your space
|
| 100 |
+
git clone https://huggingface.co/spaces/YOUR_USERNAME/food-recognition-api
|
| 101 |
+
cd food-recognition-api
|
| 102 |
+
|
| 103 |
+
# Copy files
|
| 104 |
+
cp /path/to/app.py .
|
| 105 |
+
cp /path/to/requirements.txt .
|
| 106 |
+
cp /path/to/Dockerfile .
|
| 107 |
+
|
| 108 |
+
# Commit and push
|
| 109 |
+
git add .
|
| 110 |
+
git commit -m "Initial deployment"
|
| 111 |
+
git push
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
**Step 5: Configure Environment**
|
| 115 |
+
1. Go to Space Settings → Variables
|
| 116 |
+
2. Add:
|
| 117 |
+
```
|
| 118 |
+
PORT=7860
|
| 119 |
+
HOST=0.0.0.0
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
**Step 6: Get Your API URL**
|
| 123 |
+
```
|
| 124 |
+
https://YOUR_USERNAME-food-recognition-api.hf.space
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
**Build Time**: 5-10 minutes (PyTorch is large)
|
| 128 |
+
|
| 129 |
+
---
|
| 130 |
+
|
| 131 |
+
### 🟡 Deploy to Render
|
| 132 |
+
|
| 133 |
+
**Step 1: Create Account**
|
| 134 |
+
- Visit https://render.com
|
| 135 |
+
- Sign up with GitHub
|
| 136 |
+
|
| 137 |
+
**Step 2: Create New Web Service**
|
| 138 |
+
1. Click **New +** → **Web Service**
|
| 139 |
+
2. Connect your GitHub repository
|
| 140 |
+
3. Settings:
|
| 141 |
+
- **Name**: `food-recognition-api`
|
| 142 |
+
- **Environment**: Docker
|
| 143 |
+
- **Region**: Choose closest
|
| 144 |
+
- **Branch**: `main`
|
| 145 |
+
- **Dockerfile Path**: `./Dockerfile`
|
| 146 |
+
|
| 147 |
+
**Step 3: Configure**
|
| 148 |
+
- **Plan**: Free
|
| 149 |
+
- **Environment Variables**:
|
| 150 |
+
```
|
| 151 |
+
PORT=10000
|
| 152 |
+
USDA_API_KEY=your_key_here
|
| 153 |
+
NUTRITIONIX_APP_ID=your_id_here
|
| 154 |
+
NUTRITIONIX_API_KEY=your_key_here
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
**Step 4: Deploy**
|
| 158 |
+
- Click **Create Web Service**
|
| 159 |
+
- Wait 10-15 minutes for build
|
| 160 |
+
|
| 161 |
+
**Your URL**: `https://food-recognition-api.onrender.com`
|
| 162 |
+
|
| 163 |
+
⚠️ **Note**: Free tier sleeps after 15min inactivity. First request after sleep takes ~30-60s.
|
| 164 |
+
|
| 165 |
+
---
|
| 166 |
+
|
| 167 |
+
### 🟠 Deploy to Railway (Limited Free)
|
| 168 |
+
|
| 169 |
+
**Step 1: Create Account**
|
| 170 |
+
- Visit https://railway.app
|
| 171 |
+
- Sign up with GitHub
|
| 172 |
+
|
| 173 |
+
**Step 2: Create New Project**
|
| 174 |
+
1. Click **New Project**
|
| 175 |
+
2. Select **Deploy from GitHub repo**
|
| 176 |
+
3. Choose your repository
|
| 177 |
+
|
| 178 |
+
**Step 3: Configure Service**
|
| 179 |
+
1. Click your service
|
| 180 |
+
2. Settings:
|
| 181 |
+
- **Root Directory**: `/` (or `/food_recognition_backend` if nested)
|
| 182 |
+
- **Custom Start Command**: Leave empty (uses Dockerfile)
|
| 183 |
+
|
| 184 |
+
**Step 4: Environment Variables**
|
| 185 |
+
```
|
| 186 |
+
PORT=8000
|
| 187 |
+
USDA_API_KEY=your_key_here
|
| 188 |
+
NUTRITIONIX_APP_ID=your_id_here
|
| 189 |
+
NUTRITIONIX_API_KEY=your_key_here
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
**Step 5: Generate Domain**
|
| 193 |
+
- Settings → Networking → Generate Domain
|
| 194 |
+
|
| 195 |
+
**Your URL**: `https://food-recognition-api-production.up.railway.app`
|
| 196 |
+
|
| 197 |
+
💰 **Cost**: $5 free credit monthly (~500 hours)
|
| 198 |
+
|
| 199 |
+
---
|
| 200 |
+
|
| 201 |
+
## 🔐 Environment Variables
|
| 202 |
+
|
| 203 |
+
### Required Variables
|
| 204 |
+
|
| 205 |
+
```bash
|
| 206 |
+
# Server Configuration
|
| 207 |
+
PORT=8000 # Port for the API (auto-assigned by some hosts)
|
| 208 |
+
HOST=0.0.0.0 # Host binding
|
| 209 |
+
|
| 210 |
+
# Optional: Nutrition API Keys (already have defaults)
|
| 211 |
+
USDA_API_KEY=your_key_here
|
| 212 |
+
NUTRITIONIX_APP_ID=your_id_here
|
| 213 |
+
NUTRITIONIX_API_KEY=your_key_here
|
| 214 |
+
```
|
| 215 |
+
|
| 216 |
+
### Where to Set Variables
|
| 217 |
+
|
| 218 |
+
**Hugging Face Spaces:**
|
| 219 |
+
- Settings → Repository secrets
|
| 220 |
+
|
| 221 |
+
**Render:**
|
| 222 |
+
- Environment → Environment Variables
|
| 223 |
+
|
| 224 |
+
**Railway:**
|
| 225 |
+
- Variables tab
|
| 226 |
+
|
| 227 |
+
---
|
| 228 |
+
|
| 229 |
+
## 🧪 Testing Your Deployment
|
| 230 |
+
|
| 231 |
+
### 1. Health Check
|
| 232 |
+
```bash
|
| 233 |
+
curl https://YOUR_API_URL/health
|
| 234 |
+
```
|
| 235 |
+
|
| 236 |
+
Expected response:
|
| 237 |
+
```json
|
| 238 |
+
{
|
| 239 |
+
"status": "healthy",
|
| 240 |
+
"model_loaded": true,
|
| 241 |
+
"device": "cpu",
|
| 242 |
+
"food_pipeline_loaded": true,
|
| 243 |
+
"model_type": "Professional Food Recognition Models"
|
| 244 |
+
}
|
| 245 |
+
```
|
| 246 |
+
|
| 247 |
+
### 2. Test Food Recognition
|
| 248 |
+
```bash
|
| 249 |
+
# Upload image
|
| 250 |
+
curl -X POST https://YOUR_API_URL/analyze?top_alternatives=3 \
|
| 251 |
+
-F "file=@path/to/food_image.jpg"
|
| 252 |
+
```
|
| 253 |
+
|
| 254 |
+
Expected response:
|
| 255 |
+
```json
|
| 256 |
+
{
|
| 257 |
+
"label": "pizza",
|
| 258 |
+
"confidence": 0.95,
|
| 259 |
+
"nutrition": {
|
| 260 |
+
"calories": 266,
|
| 261 |
+
"protein": 11.0,
|
| 262 |
+
"fat": 10.0,
|
| 263 |
+
"carbs": 33.0,
|
| 264 |
+
"fiber": 2.3,
|
| 265 |
+
"sugar": 3.7,
|
| 266 |
+
"sodium": 598
|
| 267 |
+
},
|
| 268 |
+
"alternatives": ["flatbread", "focaccia"],
|
| 269 |
+
"source": "Open Food Facts"
|
| 270 |
+
}
|
| 271 |
+
```
|
| 272 |
+
|
| 273 |
+
### 3. Test from URL
|
| 274 |
+
```bash
|
| 275 |
+
curl -X POST "https://YOUR_API_URL/analyze-url?image_url=https://example.com/food.jpg&top_alternatives=3"
|
| 276 |
+
```
|
| 277 |
+
|
| 278 |
+
### 4. Search Nutrition Only
|
| 279 |
+
```bash
|
| 280 |
+
curl https://YOUR_API_URL/search-nutrition/pizza
|
| 281 |
+
```
|
| 282 |
+
|
| 283 |
+
---
|
| 284 |
+
|
| 285 |
+
## 🔗 Integration with Next.js
|
| 286 |
+
|
| 287 |
+
### Step 1: Update Environment Variables
|
| 288 |
+
|
| 289 |
+
In your Next.js project, add to `.env`:
|
| 290 |
+
|
| 291 |
+
```bash
|
| 292 |
+
# Production Food Recognition API
|
| 293 |
+
FOOD_RECOGNITION_API_URL=https://YOUR_API_URL
|
| 294 |
+
```
|
| 295 |
+
|
| 296 |
+
### Step 2: Update API Routes
|
| 297 |
+
|
| 298 |
+
Your Next.js API routes are already configured to use this variable:
|
| 299 |
+
|
| 300 |
+
```javascript
|
| 301 |
+
// src/app/api/nutrition/analyze-food/route.js
|
| 302 |
+
const FOOD_API_BASE_URL = process.env.FOOD_RECOGNITION_API_URL || "http://localhost:8000";
|
| 303 |
+
```
|
| 304 |
+
|
| 305 |
+
### Step 3: Deploy Next.js
|
| 306 |
+
|
| 307 |
+
**On Vercel/Coolify:**
|
| 308 |
+
1. Add environment variable:
|
| 309 |
+
```
|
| 310 |
+
FOOD_RECOGNITION_API_URL=https://YOUR_USERNAME-food-recognition-api.hf.space
|
| 311 |
+
```
|
| 312 |
+
2. Deploy/Restart
|
| 313 |
+
|
| 314 |
+
### Step 4: Test Integration
|
| 315 |
+
|
| 316 |
+
From your Next.js app:
|
| 317 |
+
```javascript
|
| 318 |
+
const formData = new FormData();
|
| 319 |
+
formData.append('file', imageFile);
|
| 320 |
+
|
| 321 |
+
const response = await fetch('/api/nutrition/analyze-food', {
|
| 322 |
+
method: 'POST',
|
| 323 |
+
body: formData,
|
| 324 |
+
});
|
| 325 |
+
|
| 326 |
+
const result = await response.json();
|
| 327 |
+
console.log(result.data.foodName); // "pizza"
|
| 328 |
+
console.log(result.data.calories); // 266
|
| 329 |
+
```
|
| 330 |
+
|
| 331 |
+
---
|
| 332 |
+
|
| 333 |
+
## ⚡ Performance Tips
|
| 334 |
+
|
| 335 |
+
### 1. Reduce Cold Starts
|
| 336 |
+
**Hugging Face Spaces:**
|
| 337 |
+
- Upgrade to paid tier for always-on ($9/month) - optional
|
| 338 |
+
|
| 339 |
+
**Render:**
|
| 340 |
+
- Paid plan keeps service always on ($7/month) - optional
|
| 341 |
+
- Free: Keep pinging `/health` every 10 minutes
|
| 342 |
+
|
| 343 |
+
### 2. Implement Caching
|
| 344 |
+
In Next.js, cache results:
|
| 345 |
+
```javascript
|
| 346 |
+
// Example with Redis/Upstash
|
| 347 |
+
const cacheKey = `food_${imageHash}`;
|
| 348 |
+
const cached = await redis.get(cacheKey);
|
| 349 |
+
if (cached) return cached;
|
| 350 |
+
|
| 351 |
+
// Call API only if not cached
|
| 352 |
+
const result = await callFoodAPI();
|
| 353 |
+
await redis.set(cacheKey, result, { ex: 86400 }); // 24h cache
|
| 354 |
+
```
|
| 355 |
+
|
| 356 |
+
### 3. Optimize Image Size
|
| 357 |
+
Before sending to API:
|
| 358 |
+
```javascript
|
| 359 |
+
// Resize images to max 800x800px
|
| 360 |
+
const resized = await sharp(imageBuffer)
|
| 361 |
+
.resize(800, 800, { fit: 'inside' })
|
| 362 |
+
.jpeg({ quality: 80 })
|
| 363 |
+
.toBuffer();
|
| 364 |
+
```
|
| 365 |
+
|
| 366 |
+
---
|
| 367 |
+
|
| 368 |
+
## 🐛 Troubleshooting
|
| 369 |
+
|
| 370 |
+
### Build Fails - Out of Memory
|
| 371 |
+
**Solution**: Reduce PyTorch size in `requirements.txt`:
|
| 372 |
+
```txt
|
| 373 |
+
torch>=2.0.0,<2.2.0 # Pin specific version
|
| 374 |
+
```
|
| 375 |
+
|
| 376 |
+
### API Timeout
|
| 377 |
+
**Solution**: Increase timeout in Next.js:
|
| 378 |
+
```javascript
|
| 379 |
+
const response = await fetch(API_URL, {
|
| 380 |
+
method: 'POST',
|
| 381 |
+
body: formData,
|
| 382 |
+
signal: AbortSignal.timeout(30000), // 30s timeout
|
| 383 |
+
});
|
| 384 |
+
```
|
| 385 |
+
|
| 386 |
+
### Model Not Loading
|
| 387 |
+
**Solution**: Check logs for memory issues. Upgrade to paid tier or reduce model size.
|
| 388 |
+
|
| 389 |
+
### 422 Error - No Nutrition Data
|
| 390 |
+
**Solution**: This is expected for some foods. Implement fallback:
|
| 391 |
+
```javascript
|
| 392 |
+
if (response.status === 422) {
|
| 393 |
+
// Show manual input form
|
| 394 |
+
showManualInputForm();
|
| 395 |
+
}
|
| 396 |
+
```
|
| 397 |
+
|
| 398 |
+
---
|
| 399 |
+
|
| 400 |
+
## 📊 Cost Comparison
|
| 401 |
+
|
| 402 |
+
| Platform | Free Tier | Monthly Cost | RAM | Cold Start | Best For |
|
| 403 |
+
|----------|-----------|--------------|-----|------------|----------|
|
| 404 |
+
| **Hugging Face** | ✅ Unlimited | $0 | 16GB | ~30-60s | **Development & Production** |
|
| 405 |
+
| **Render** | ✅ Yes | $0 | 512MB | ~30-60s | **Light Usage** |
|
| 406 |
+
| **Railway** | ⚠️ Limited | $0 ($5 credit) | 2GB | None | **Testing** |
|
| 407 |
+
| **Coolify** | ✅ Self-hosted | $0 (your server) | Custom | None | **Full Control** |
|
| 408 |
+
|
| 409 |
+
---
|
| 410 |
+
|
| 411 |
+
## 🎯 Recommendation
|
| 412 |
+
|
| 413 |
+
**For Production (Free):**
|
| 414 |
+
1. 🥇 **Hugging Face Spaces** - Best free option, no limits
|
| 415 |
+
2. 🥈 **Render** - Good if traffic is low (sleeps after 15min)
|
| 416 |
+
|
| 417 |
+
**For Production (Paid):**
|
| 418 |
+
1. 🥇 **Coolify** (Self-hosted) - Full control, $5-20/month
|
| 419 |
+
2. 🥈 **Railway Pro** - Easy, $20/month
|
| 420 |
+
3. 🥉 **Render Paid** - Simple, $7/month
|
| 421 |
+
|
| 422 |
+
---
|
| 423 |
+
|
| 424 |
+
## 📝 Next Steps
|
| 425 |
+
|
| 426 |
+
1. ✅ Choose hosting platform (Hugging Face recommended)
|
| 427 |
+
2. ✅ Deploy using instructions above
|
| 428 |
+
3. ✅ Test with `/health` endpoint
|
| 429 |
+
4. ✅ Update `FOOD_RECOGNITION_API_URL` in Next.js
|
| 430 |
+
5. ✅ Deploy Next.js with new env variable
|
| 431 |
+
6. ✅ Test end-to-end integration
|
| 432 |
+
|
| 433 |
+
---
|
| 434 |
+
|
| 435 |
+
## 🆘 Support
|
| 436 |
+
|
| 437 |
+
If you encounter issues:
|
| 438 |
+
1. Check logs on your hosting platform
|
| 439 |
+
2. Test locally with Docker first
|
| 440 |
+
3. Verify environment variables are set
|
| 441 |
+
4. Check API URL is accessible
|
| 442 |
+
|
| 443 |
+
---
|
| 444 |
+
|
| 445 |
+
## 📄 License
|
| 446 |
+
|
| 447 |
+
MIT License - Free to use for personal and commercial projects.
|
| 448 |
+
|
| 449 |
+
---
|
| 450 |
+
|
| 451 |
+
**Ready to deploy? Start with Hugging Face Spaces for the best free experience!** 🚀
|
Dockerfile
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use Python 3.11 slim image
|
| 2 |
+
FROM python:3.11-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install system dependencies
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
gcc \
|
| 10 |
+
g++ \
|
| 11 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 12 |
+
|
| 13 |
+
# Copy requirements first (for better caching)
|
| 14 |
+
COPY requirements.txt .
|
| 15 |
+
|
| 16 |
+
# Install Python dependencies
|
| 17 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 18 |
+
|
| 19 |
+
# Copy application code
|
| 20 |
+
COPY app.py .
|
| 21 |
+
|
| 22 |
+
# Expose port
|
| 23 |
+
EXPOSE 8000
|
| 24 |
+
|
| 25 |
+
# Set environment variables
|
| 26 |
+
ENV PYTHONUNBUFFERED=1
|
| 27 |
+
ENV PORT=8000
|
| 28 |
+
|
| 29 |
+
# Run the application
|
| 30 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000", "--workers", "1"]
|
README.md
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🍕 Food Recognition Backend API
|
| 2 |
+
|
| 3 |
+
Fast and accurate food recognition API powered by Hugging Face Transformers and Open Food Facts nutrition database.
|
| 4 |
+
|
| 5 |
+
## ✨ Features
|
| 6 |
+
|
| 7 |
+
- 🎯 **Accurate Food Recognition** - Uses specialized `nateraw/food` model
|
| 8 |
+
- 📊 **Nutrition Data** - Integrates with Open Food Facts database
|
| 9 |
+
- ⚡ **Fast Processing** - Optimized for quick inference
|
| 10 |
+
- 🔄 **Multiple Formats** - Upload files or provide image URLs
|
| 11 |
+
- 🌐 **CORS Enabled** - Ready for web integration
|
| 12 |
+
- 📝 **Auto Documentation** - Built-in FastAPI docs at `/docs`
|
| 13 |
+
|
| 14 |
+
## 🚀 Quick Start
|
| 15 |
+
|
| 16 |
+
### Local Development
|
| 17 |
+
|
| 18 |
+
1. **Clone the repository**
|
| 19 |
+
```bash
|
| 20 |
+
git clone https://github.com/YOUR_USERNAME/food_recognition_backend.git
|
| 21 |
+
cd food_recognition_backend
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
2. **Install dependencies**
|
| 25 |
+
```bash
|
| 26 |
+
pip install -r requirements.txt
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
3. **Set up environment**
|
| 30 |
+
```bash
|
| 31 |
+
cp .env.example .env
|
| 32 |
+
# Edit .env with your API keys (optional)
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
4. **Run the server**
|
| 36 |
+
```bash
|
| 37 |
+
python app.py
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
Server will start at `http://localhost:8000`
|
| 41 |
+
|
| 42 |
+
5. **Test the API**
|
| 43 |
+
```bash
|
| 44 |
+
# Health check
|
| 45 |
+
curl http://localhost:8000/health
|
| 46 |
+
|
| 47 |
+
# Analyze food image
|
| 48 |
+
curl -X POST http://localhost:8000/analyze \
|
| 49 |
+
-F "file=@path/to/food.jpg"
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
### Docker
|
| 53 |
+
|
| 54 |
+
```bash
|
| 55 |
+
# Build image
|
| 56 |
+
docker build -t food-recognition-api .
|
| 57 |
+
|
| 58 |
+
# Run container
|
| 59 |
+
docker run -p 8000:8000 \
|
| 60 |
+
-e PORT=8000 \
|
| 61 |
+
food-recognition-api
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
## 📚 API Documentation
|
| 65 |
+
|
| 66 |
+
### Endpoints
|
| 67 |
+
|
| 68 |
+
#### `GET /` - Health Check
|
| 69 |
+
```bash
|
| 70 |
+
curl http://localhost:8000/
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
Response:
|
| 74 |
+
```json
|
| 75 |
+
{
|
| 76 |
+
"status": "healthy",
|
| 77 |
+
"message": "Fast Food Recognition Backend",
|
| 78 |
+
"version": "3.0.0",
|
| 79 |
+
"device": "cpu"
|
| 80 |
+
}
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
#### `GET /health` - Detailed Health
|
| 84 |
+
```bash
|
| 85 |
+
curl http://localhost:8000/health
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
Response:
|
| 89 |
+
```json
|
| 90 |
+
{
|
| 91 |
+
"status": "healthy",
|
| 92 |
+
"model_loaded": true,
|
| 93 |
+
"device": "cpu",
|
| 94 |
+
"food_pipeline_loaded": true,
|
| 95 |
+
"model_type": "Professional Food Recognition Models"
|
| 96 |
+
}
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
#### `POST /analyze` - Analyze Food Image (Upload)
|
| 100 |
+
```bash
|
| 101 |
+
curl -X POST http://localhost:8000/analyze?top_alternatives=3 \
|
| 102 |
+
-F "file=@pizza.jpg"
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
Response:
|
| 106 |
+
```json
|
| 107 |
+
{
|
| 108 |
+
"label": "pizza",
|
| 109 |
+
"confidence": 0.95,
|
| 110 |
+
"nutrition": {
|
| 111 |
+
"calories": 266.0,
|
| 112 |
+
"protein": 11.0,
|
| 113 |
+
"fat": 10.0,
|
| 114 |
+
"carbs": 33.0,
|
| 115 |
+
"fiber": 2.3,
|
| 116 |
+
"sugar": 3.7,
|
| 117 |
+
"sodium": 598.0
|
| 118 |
+
},
|
| 119 |
+
"alternatives": ["flatbread", "focaccia", "calzone"],
|
| 120 |
+
"source": "Open Food Facts",
|
| 121 |
+
"off_product_id": "1234567890"
|
| 122 |
+
}
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
#### `POST /analyze-url` - Analyze Food Image (URL)
|
| 126 |
+
```bash
|
| 127 |
+
curl -X POST "http://localhost:8000/analyze-url?image_url=https://example.com/pizza.jpg&top_alternatives=3"
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
Response: Same as `/analyze`
|
| 131 |
+
|
| 132 |
+
#### `GET /search-nutrition/{food_name}` - Search Nutrition Only
|
| 133 |
+
```bash
|
| 134 |
+
curl http://localhost:8000/search-nutrition/pizza
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
Response:
|
| 138 |
+
```json
|
| 139 |
+
{
|
| 140 |
+
"food_name": "pizza",
|
| 141 |
+
"nutrition": {
|
| 142 |
+
"calories": 266.0,
|
| 143 |
+
"protein": 11.0,
|
| 144 |
+
"fat": 10.0,
|
| 145 |
+
"carbs": 33.0,
|
| 146 |
+
"fiber": 2.3,
|
| 147 |
+
"sugar": 3.7,
|
| 148 |
+
"sodium": 598.0
|
| 149 |
+
},
|
| 150 |
+
"source": "Open Food Facts",
|
| 151 |
+
"off_product_id": "1234567890"
|
| 152 |
+
}
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
### Interactive Documentation
|
| 156 |
+
|
| 157 |
+
Visit `http://localhost:8000/docs` for interactive Swagger UI documentation.
|
| 158 |
+
|
| 159 |
+
## 🏗️ Architecture
|
| 160 |
+
|
| 161 |
+
```
|
| 162 |
+
┌─────────────┐
|
| 163 |
+
│ Client │
|
| 164 |
+
└──────┬──────┘
|
| 165 |
+
│
|
| 166 |
+
▼
|
| 167 |
+
┌─────────────────────────┐
|
| 168 |
+
│ FastAPI Server │
|
| 169 |
+
│ (app.py) │
|
| 170 |
+
└──────┬──────────────────┘
|
| 171 |
+
│
|
| 172 |
+
├──────────────────┐
|
| 173 |
+
│ │
|
| 174 |
+
▼ ▼
|
| 175 |
+
┌──────────────┐ ┌──────────────┐
|
| 176 |
+
│ Food Model │ │ Nutrition │
|
| 177 |
+
│ (nateraw) │ │ Client │
|
| 178 |
+
└──────────────┘ └──────┬───────┘
|
| 179 |
+
│
|
| 180 |
+
▼
|
| 181 |
+
┌──────────────┐
|
| 182 |
+
│ Open Food │
|
| 183 |
+
│ Facts API │
|
| 184 |
+
└──────────────┘
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
## 📦 Models Used
|
| 188 |
+
|
| 189 |
+
- **Primary**: `nateraw/food` - Specialized food classifier
|
| 190 |
+
- **Fallback**: `Kaludi/food-category-classification-v2.0`
|
| 191 |
+
- **Alternative**: `google/vit-base-patch16-224`
|
| 192 |
+
|
| 193 |
+
## 🔧 Configuration
|
| 194 |
+
|
| 195 |
+
### Environment Variables
|
| 196 |
+
|
| 197 |
+
```bash
|
| 198 |
+
# Server
|
| 199 |
+
PORT=8000
|
| 200 |
+
HOST=0.0.0.0
|
| 201 |
+
|
| 202 |
+
# Optional API Keys (defaults included)
|
| 203 |
+
USDA_API_KEY=your_key
|
| 204 |
+
NUTRITIONIX_APP_ID=your_id
|
| 205 |
+
NUTRITIONIX_API_KEY=your_key
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
### Model Selection
|
| 209 |
+
|
| 210 |
+
Edit `app.py` line 48 to switch models:
|
| 211 |
+
```python
|
| 212 |
+
MODEL_NAME = "nateraw/food" # Current
|
| 213 |
+
# MODEL_NAME = "dwililiya/food101-model-classification" # Alternative
|
| 214 |
+
```
|
| 215 |
+
|
| 216 |
+
## 📊 Performance
|
| 217 |
+
|
| 218 |
+
- **First Request**: ~30-60s (model loading)
|
| 219 |
+
- **Subsequent Requests**: ~0.5-1s per image
|
| 220 |
+
- **Memory Usage**: ~1.5GB RAM
|
| 221 |
+
- **Model Size**: ~500MB
|
| 222 |
+
|
| 223 |
+
## 🌐 Deployment
|
| 224 |
+
|
| 225 |
+
See [DEPLOYMENT.md](DEPLOYMENT.md) for comprehensive deployment guide including:
|
| 226 |
+
- 🆓 Free hosting options (Hugging Face, Render, Railway)
|
| 227 |
+
- 💰 Paid options (Coolify, AWS, GCP)
|
| 228 |
+
- ⚙️ Configuration examples
|
| 229 |
+
- 🔗 Next.js integration guide
|
| 230 |
+
|
| 231 |
+
## 🛠️ Tech Stack
|
| 232 |
+
|
| 233 |
+
- **Framework**: FastAPI
|
| 234 |
+
- **ML Library**: PyTorch + Transformers
|
| 235 |
+
- **Image Processing**: Pillow
|
| 236 |
+
- **HTTP Client**: aiohttp (async)
|
| 237 |
+
- **Validation**: Pydantic v2
|
| 238 |
+
- **Server**: Uvicorn
|
| 239 |
+
|
| 240 |
+
## 📝 Requirements
|
| 241 |
+
|
| 242 |
+
```txt
|
| 243 |
+
Python >= 3.11
|
| 244 |
+
torch >= 2.0.0
|
| 245 |
+
transformers >= 4.30.0
|
| 246 |
+
fastapi >= 0.104.1
|
| 247 |
+
uvicorn[standard] >= 0.24.0
|
| 248 |
+
```
|
| 249 |
+
|
| 250 |
+
See [requirements.txt](requirements.txt) for full dependencies.
|
| 251 |
+
|
| 252 |
+
## 🧪 Testing
|
| 253 |
+
|
| 254 |
+
```bash
|
| 255 |
+
# Test with sample image
|
| 256 |
+
curl -X POST http://localhost:8000/analyze \
|
| 257 |
+
-F "file=@test_images/pizza.jpg"
|
| 258 |
+
|
| 259 |
+
# Test with URL
|
| 260 |
+
curl -X POST "http://localhost:8000/analyze-url?image_url=https://example.com/burger.jpg"
|
| 261 |
+
|
| 262 |
+
# Test nutrition search
|
| 263 |
+
curl http://localhost:8000/search-nutrition/pasta
|
| 264 |
+
```
|
| 265 |
+
|
| 266 |
+
## 🐛 Known Issues
|
| 267 |
+
|
| 268 |
+
1. **422 Error - No Nutrition Data**: Some foods don't have data in Open Food Facts
|
| 269 |
+
- Solution: Implement fallback or manual input
|
| 270 |
+
|
| 271 |
+
2. **Cold Start**: First request is slow due to model loading
|
| 272 |
+
- Solution: Use paid hosting tier or implement keep-alive pings
|
| 273 |
+
|
| 274 |
+
3. **Memory Usage**: Large model requires 1.5GB+ RAM
|
| 275 |
+
- Solution: Use cloud hosting with sufficient memory
|
| 276 |
+
|
| 277 |
+
## 🔐 Security
|
| 278 |
+
|
| 279 |
+
- ✅ CORS configured for web integration
|
| 280 |
+
- ✅ Input validation with Pydantic
|
| 281 |
+
- ✅ File type validation
|
| 282 |
+
- ✅ Error handling and logging
|
| 283 |
+
- ⚠️ Add rate limiting for production use
|
| 284 |
+
|
| 285 |
+
## 📄 License
|
| 286 |
+
|
| 287 |
+
MIT License - Free for personal and commercial use
|
| 288 |
+
|
| 289 |
+
## 🤝 Contributing
|
| 290 |
+
|
| 291 |
+
Contributions welcome! Areas for improvement:
|
| 292 |
+
- Add more ML models
|
| 293 |
+
- Improve nutrition data accuracy
|
| 294 |
+
- Add caching layer
|
| 295 |
+
- Implement rate limiting
|
| 296 |
+
- Add authentication
|
| 297 |
+
|
| 298 |
+
## 📧 Contact
|
| 299 |
+
|
| 300 |
+
For issues or questions, open a GitHub issue.
|
| 301 |
+
|
| 302 |
+
## 🙏 Acknowledgments
|
| 303 |
+
|
| 304 |
+
- [Hugging Face](https://huggingface.co) - ML models
|
| 305 |
+
- [Open Food Facts](https://world.openfoodfacts.org) - Nutrition database
|
| 306 |
+
- [FastAPI](https://fastapi.tiangolo.com) - Web framework
|
| 307 |
+
|
| 308 |
+
---
|
| 309 |
+
|
| 310 |
+
**Ready to deploy?** Check out [DEPLOYMENT.md](DEPLOYMENT.md) for step-by-step instructions! 🚀
|
app.py
ADDED
|
@@ -0,0 +1,643 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Optimized Food Recognition Backend
|
| 4 |
+
Fast CLIP-based food identification + Open Food Facts nutrition
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import asyncio
|
| 8 |
+
import aiohttp
|
| 9 |
+
import json
|
| 10 |
+
import logging
|
| 11 |
+
import os
|
| 12 |
+
import re
|
| 13 |
+
import time
|
| 14 |
+
from io import BytesIO
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from typing import Dict, List, Optional, Any, Tuple
|
| 17 |
+
from contextlib import asynccontextmanager
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
from PIL import Image
|
| 21 |
+
from transformers import CLIPProcessor, CLIPModel, AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
| 22 |
+
|
| 23 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, Query
|
| 24 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 25 |
+
from fastapi.responses import JSONResponse
|
| 26 |
+
from pydantic import BaseModel, Field
|
| 27 |
+
import uvicorn
|
| 28 |
+
|
| 29 |
+
# Configure logging
|
| 30 |
+
logging.basicConfig(level=logging.INFO)
|
| 31 |
+
logger = logging.getLogger(__name__)
|
| 32 |
+
|
| 33 |
+
# Configuration
|
| 34 |
+
class Config:
|
| 35 |
+
"""Application configuration"""
|
| 36 |
+
# Server Configuration
|
| 37 |
+
HOST = os.getenv("HOST", "0.0.0.0")
|
| 38 |
+
PORT = int(os.getenv("PORT", "8000"))
|
| 39 |
+
|
| 40 |
+
# Device Configuration
|
| 41 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 42 |
+
|
| 43 |
+
# Open Food Facts API
|
| 44 |
+
OFF_API_BASE = "https://world.openfoodfacts.org/api/v0"
|
| 45 |
+
OFF_SEARCH_URL = "https://world.openfoodfacts.org/cgi/search.pl"
|
| 46 |
+
OFF_USER_AGENT = "FoodRecognitionApp/1.0 (contact@foodapp.com)"
|
| 47 |
+
|
| 48 |
+
# Nutrition APIs - Load from environment variables
|
| 49 |
+
USDA_API_KEY = os.getenv("USDA_API_KEY", "kgw5ZaUGy92zoFoCzAo1pGq688u0jYXEA17ZlzO9")
|
| 50 |
+
NUTRITIONIX_APP_ID = os.getenv("NUTRITIONIX_APP_ID", "4224c603")
|
| 51 |
+
NUTRITIONIX_API_KEY = os.getenv("NUTRITIONIX_API_KEY", "3f4717bb1433fcbf57799a36318301ab")
|
| 52 |
+
|
| 53 |
+
# Model Configuration - Switch between models by commenting/uncommenting the lines below
|
| 54 |
+
MODEL_NAME = "nateraw/food" # Specialized food classifier (high accuracy, currently active)
|
| 55 |
+
# MODEL_NAME = "dwililiya/food101-model-classification" # EfficientNet-B0, 101 specific foods, lighter than nateraw
|
| 56 |
+
# MODEL_NAME = "google/mobilenet_v2_1.0_224" # Google MobileNet v2 (general purpose, not food-specific)
|
| 57 |
+
|
| 58 |
+
# Best Hugging Face models for food recognition
|
| 59 |
+
FOOD_MODELS = {
|
| 60 |
+
"primary": MODEL_NAME, # Currently selected model
|
| 61 |
+
"secondary": "google/vit-base-patch16-224", # Vision Transformer
|
| 62 |
+
"fallback": "microsoft/resnet-50", # ResNet for general classification
|
| 63 |
+
"food_specific": "Kaludi/food-category-classification-v2.0", # Another food-specific model
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
config = Config()
|
| 67 |
+
|
| 68 |
+
# Data Models
|
| 69 |
+
class NutritionInfo(BaseModel):
|
| 70 |
+
calories: float = Field(..., description="Calories per 100g")
|
| 71 |
+
protein: float = Field(..., description="Protein in grams per 100g")
|
| 72 |
+
fat: float = Field(..., description="Fat in grams per 100g")
|
| 73 |
+
carbs: float = Field(..., description="Carbohydrates in grams per 100g")
|
| 74 |
+
fiber: Optional[float] = Field(None, description="Fiber in grams per 100g")
|
| 75 |
+
sugar: Optional[float] = Field(None, description="Sugar in grams per 100g")
|
| 76 |
+
sodium: Optional[float] = Field(None, description="Sodium in mg per 100g")
|
| 77 |
+
|
| 78 |
+
class FoodAnalysisResponse(BaseModel):
|
| 79 |
+
label: str = Field(..., description="Identified food name")
|
| 80 |
+
confidence: float = Field(..., description="Recognition confidence (0-1)")
|
| 81 |
+
nutrition: NutritionInfo = Field(..., description="Nutritional information")
|
| 82 |
+
alternatives: List[str] = Field(default=[], description="Alternative food predictions")
|
| 83 |
+
source: str = Field(..., description="Data source")
|
| 84 |
+
off_product_id: Optional[str] = Field(None, description="Open Food Facts product ID")
|
| 85 |
+
|
| 86 |
+
class ErrorResponse(BaseModel):
|
| 87 |
+
error: str
|
| 88 |
+
detail: Optional[str] = None
|
| 89 |
+
|
| 90 |
+
# Professional Food Recognition Model
|
| 91 |
+
class FoodRecognitionModel:
|
| 92 |
+
"""Professional food recognition using specialized Hugging Face models"""
|
| 93 |
+
|
| 94 |
+
def __init__(self):
|
| 95 |
+
self.device = config.DEVICE
|
| 96 |
+
self.primary_model = None
|
| 97 |
+
self.secondary_model = None
|
| 98 |
+
self.food_pipeline = None
|
| 99 |
+
self._load_models()
|
| 100 |
+
|
| 101 |
+
def _load_models(self):
|
| 102 |
+
"""Load specialized food recognition models"""
|
| 103 |
+
try:
|
| 104 |
+
logger.info(f"Loading specialized food recognition models on {self.device}")
|
| 105 |
+
|
| 106 |
+
# Load primary food-specific model
|
| 107 |
+
try:
|
| 108 |
+
logger.info(f"Loading primary food model: {FOOD_MODELS['primary']}")
|
| 109 |
+
self.food_pipeline = pipeline(
|
| 110 |
+
"image-classification",
|
| 111 |
+
model=FOOD_MODELS["primary"],
|
| 112 |
+
device=0 if "cuda" in str(self.device) else -1
|
| 113 |
+
)
|
| 114 |
+
logger.info("✅ Primary food model loaded successfully")
|
| 115 |
+
except Exception as e:
|
| 116 |
+
logger.warning(f"Primary model failed: {e}, trying secondary...")
|
| 117 |
+
|
| 118 |
+
# Fallback to secondary model
|
| 119 |
+
try:
|
| 120 |
+
logger.info("Loading secondary food model: Kaludi/food-category-classification-v2.0")
|
| 121 |
+
self.food_pipeline = pipeline(
|
| 122 |
+
"image-classification",
|
| 123 |
+
model=FOOD_MODELS["food_specific"],
|
| 124 |
+
device=0 if "cuda" in str(self.device) else -1
|
| 125 |
+
)
|
| 126 |
+
logger.info("✅ Secondary food model loaded successfully")
|
| 127 |
+
except Exception as e2:
|
| 128 |
+
logger.warning(f"Secondary model failed: {e2}, using Vision Transformer...")
|
| 129 |
+
|
| 130 |
+
# Final fallback to ViT
|
| 131 |
+
self.food_pipeline = pipeline(
|
| 132 |
+
"image-classification",
|
| 133 |
+
model=FOOD_MODELS["secondary"],
|
| 134 |
+
device=0 if "cuda" in str(self.device) else -1
|
| 135 |
+
)
|
| 136 |
+
logger.info("✅ Vision Transformer model loaded as fallback")
|
| 137 |
+
|
| 138 |
+
except Exception as e:
|
| 139 |
+
logger.error(f"Failed to load any food recognition model: {e}")
|
| 140 |
+
raise
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def recognize_food(self, image: Image.Image) -> Tuple[str, float, List[str]]:
|
| 144 |
+
"""
|
| 145 |
+
Professional food recognition using specialized models
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
(food_name, confidence, alternatives)
|
| 149 |
+
"""
|
| 150 |
+
try:
|
| 151 |
+
start_time = time.time()
|
| 152 |
+
|
| 153 |
+
# Convert image if needed
|
| 154 |
+
if image.mode != 'RGB':
|
| 155 |
+
image = image.convert('RGB')
|
| 156 |
+
|
| 157 |
+
# Use specialized food recognition pipeline
|
| 158 |
+
results = self.food_pipeline(image, top_k=5)
|
| 159 |
+
|
| 160 |
+
if not results:
|
| 161 |
+
logger.warning("No food predictions returned")
|
| 162 |
+
return "unknown food", 0.1, []
|
| 163 |
+
|
| 164 |
+
# Extract top prediction
|
| 165 |
+
top_result = results[0]
|
| 166 |
+
food_name = self._clean_food_label(top_result['label'])
|
| 167 |
+
confidence = top_result['score']
|
| 168 |
+
|
| 169 |
+
# Get alternatives
|
| 170 |
+
alternatives = []
|
| 171 |
+
for result in results[1:]:
|
| 172 |
+
alt_name = self._clean_food_label(result['label'])
|
| 173 |
+
if alt_name != food_name: # Avoid duplicates
|
| 174 |
+
alternatives.append(alt_name)
|
| 175 |
+
|
| 176 |
+
elapsed = time.time() - start_time
|
| 177 |
+
logger.info(f"🎯 Professional food recognition in {elapsed:.2f}s: {food_name} ({confidence:.3f})")
|
| 178 |
+
|
| 179 |
+
return food_name, confidence, alternatives[:4] # Return top 4 alternatives
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
logger.error(f"Food recognition failed: {e}")
|
| 183 |
+
return "unknown food", 0.1, []
|
| 184 |
+
|
| 185 |
+
def _clean_food_label(self, label: str) -> str:
|
| 186 |
+
"""Clean food label from model output"""
|
| 187 |
+
# Remove common prefixes/suffixes from model labels
|
| 188 |
+
cleaned = label.lower().strip()
|
| 189 |
+
|
| 190 |
+
# Remove model-specific prefixes
|
| 191 |
+
prefixes_to_remove = ['food_', 'dish_', 'meal_']
|
| 192 |
+
for prefix in prefixes_to_remove:
|
| 193 |
+
if cleaned.startswith(prefix):
|
| 194 |
+
cleaned = cleaned[len(prefix):]
|
| 195 |
+
|
| 196 |
+
# Replace underscores with spaces
|
| 197 |
+
cleaned = cleaned.replace('_', ' ')
|
| 198 |
+
|
| 199 |
+
# Remove extra spaces
|
| 200 |
+
cleaned = ' '.join(cleaned.split())
|
| 201 |
+
|
| 202 |
+
return cleaned
|
| 203 |
+
|
| 204 |
+
# Optimized Open Food Facts Client
|
| 205 |
+
class FastNutritionClient:
|
| 206 |
+
"""Fast nutrition data client with better error handling"""
|
| 207 |
+
|
| 208 |
+
def __init__(self):
|
| 209 |
+
self.session = None
|
| 210 |
+
self.timeout = aiohttp.ClientTimeout(total=5, connect=2) # Very fast timeout
|
| 211 |
+
|
| 212 |
+
async def __aenter__(self):
|
| 213 |
+
self.session = aiohttp.ClientSession(timeout=self.timeout)
|
| 214 |
+
return self
|
| 215 |
+
|
| 216 |
+
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
| 217 |
+
if self.session:
|
| 218 |
+
await self.session.close()
|
| 219 |
+
|
| 220 |
+
async def get_nutrition(self, food_name: str) -> Optional[Tuple[NutritionInfo, str, Optional[str]]]:
|
| 221 |
+
"""
|
| 222 |
+
Nutrition data lookup from Open Food Facts only - NO FALLBACKS
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
(nutrition_info, source, product_id) or None if not found in OFF
|
| 226 |
+
"""
|
| 227 |
+
try:
|
| 228 |
+
# Try multiple search strategies for better results
|
| 229 |
+
search_terms = self._generate_search_terms(food_name)
|
| 230 |
+
|
| 231 |
+
for search_term in search_terms:
|
| 232 |
+
try:
|
| 233 |
+
result = await asyncio.wait_for(self._search_off(search_term), timeout=2.0)
|
| 234 |
+
if result:
|
| 235 |
+
return result
|
| 236 |
+
except asyncio.TimeoutError:
|
| 237 |
+
logger.debug(f"Timeout searching for '{search_term}'")
|
| 238 |
+
continue
|
| 239 |
+
except Exception as e:
|
| 240 |
+
logger.debug(f"Error searching for '{search_term}': {e}")
|
| 241 |
+
continue
|
| 242 |
+
|
| 243 |
+
# NO FALLBACK - return None if not found in Open Food Facts
|
| 244 |
+
logger.warning(f"No nutrition data found in Open Food Facts for '{food_name}'")
|
| 245 |
+
return None
|
| 246 |
+
|
| 247 |
+
except Exception as e:
|
| 248 |
+
logger.warning(f"Nutrition lookup failed for '{food_name}': {e}")
|
| 249 |
+
return None
|
| 250 |
+
|
| 251 |
+
def _generate_search_terms(self, food_name: str) -> List[str]:
|
| 252 |
+
"""Generate multiple search terms for better matching"""
|
| 253 |
+
terms = []
|
| 254 |
+
|
| 255 |
+
# Original term
|
| 256 |
+
terms.append(food_name.lower().strip())
|
| 257 |
+
|
| 258 |
+
# Remove descriptive words for broader search
|
| 259 |
+
clean_term = food_name.lower()
|
| 260 |
+
remove_words = ["american", "fluffy", "stack of", "with butter", "with syrup", "breakfast"]
|
| 261 |
+
for word in remove_words:
|
| 262 |
+
clean_term = clean_term.replace(word, "").strip()
|
| 263 |
+
|
| 264 |
+
if clean_term and clean_term != terms[0]:
|
| 265 |
+
terms.append(clean_term)
|
| 266 |
+
|
| 267 |
+
# Extract main food word (first meaningful word)
|
| 268 |
+
words = clean_term.split()
|
| 269 |
+
if words:
|
| 270 |
+
main_word = words[0] if len(words[0]) > 3 else (words[1] if len(words) > 1 else words[0])
|
| 271 |
+
if main_word not in terms:
|
| 272 |
+
terms.append(main_word)
|
| 273 |
+
|
| 274 |
+
return terms[:3] # Limit to 3 attempts
|
| 275 |
+
|
| 276 |
+
async def _search_off(self, search_term: str) -> Optional[Tuple[NutritionInfo, str, Optional[str]]]:
|
| 277 |
+
"""Search Open Food Facts with single term"""
|
| 278 |
+
try:
|
| 279 |
+
params = {
|
| 280 |
+
"search_terms": search_term,
|
| 281 |
+
"search_simple": 1,
|
| 282 |
+
"action": "process",
|
| 283 |
+
"json": 1,
|
| 284 |
+
"page_size": 5,
|
| 285 |
+
"sort_by": "popularity"
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
headers = {"User-Agent": config.OFF_USER_AGENT}
|
| 289 |
+
|
| 290 |
+
# Use asyncio.wait_for for additional timeout protection
|
| 291 |
+
search_task = self.session.get(config.OFF_SEARCH_URL, params=params, headers=headers)
|
| 292 |
+
|
| 293 |
+
async with await asyncio.wait_for(search_task, timeout=3.0) as response:
|
| 294 |
+
if response.status != 200:
|
| 295 |
+
return None
|
| 296 |
+
|
| 297 |
+
data = await response.json()
|
| 298 |
+
products = data.get("products", [])
|
| 299 |
+
|
| 300 |
+
# Find best product with nutrition data
|
| 301 |
+
for product in products[:3]:
|
| 302 |
+
product_name = product.get("product_name", "unknown")
|
| 303 |
+
logger.debug(f"Checking product: {product_name}")
|
| 304 |
+
nutrition = self._extract_nutrition(product)
|
| 305 |
+
if nutrition:
|
| 306 |
+
logger.debug(f"Extracted nutrition: {nutrition.calories} kcal")
|
| 307 |
+
if self._validate_nutrition(nutrition):
|
| 308 |
+
product_id = product.get("code")
|
| 309 |
+
logger.info(f"✅ Found nutrition for '{search_term}': {nutrition.calories} kcal")
|
| 310 |
+
return nutrition, "Open Food Facts", product_id
|
| 311 |
+
else:
|
| 312 |
+
logger.debug(f"❌ Nutrition validation failed for {product_name}")
|
| 313 |
+
else:
|
| 314 |
+
logger.debug(f"❌ Could not extract nutrition from {product_name}")
|
| 315 |
+
|
| 316 |
+
except asyncio.TimeoutError:
|
| 317 |
+
logger.debug(f"OFF search timed out for '{search_term}'")
|
| 318 |
+
except Exception as e:
|
| 319 |
+
logger.debug(f"OFF search failed for '{search_term}': {e}")
|
| 320 |
+
|
| 321 |
+
return None
|
| 322 |
+
|
| 323 |
+
def _safe_float(self, value) -> float:
|
| 324 |
+
"""Safely convert value to float"""
|
| 325 |
+
if not value:
|
| 326 |
+
return 0.0
|
| 327 |
+
try:
|
| 328 |
+
if isinstance(value, str):
|
| 329 |
+
cleaned = value.replace(',', '.')
|
| 330 |
+
# Handle duplicated decimals like "0.120.12"
|
| 331 |
+
if cleaned.count('.') > 1:
|
| 332 |
+
parts = cleaned.split('.')
|
| 333 |
+
cleaned = f"{parts[0]}.{parts[1][:2]}" # Take first 2 decimal places
|
| 334 |
+
return float(cleaned)
|
| 335 |
+
return float(value)
|
| 336 |
+
except (ValueError, TypeError):
|
| 337 |
+
return 0.0
|
| 338 |
+
|
| 339 |
+
def _extract_nutrition(self, product: Dict) -> Optional[NutritionInfo]:
|
| 340 |
+
"""Extract nutrition with improved validation"""
|
| 341 |
+
try:
|
| 342 |
+
nutriments = product.get("nutriments", {})
|
| 343 |
+
|
| 344 |
+
# Get calories from multiple possible fields
|
| 345 |
+
calories = 0
|
| 346 |
+
for key in ["energy-kcal_100g", "energy_100g"]:
|
| 347 |
+
value = nutriments.get(key)
|
| 348 |
+
if value:
|
| 349 |
+
if key == "energy_100g": # kJ to kcal
|
| 350 |
+
calories = self._safe_float(value) / 4.184
|
| 351 |
+
else:
|
| 352 |
+
calories = self._safe_float(value)
|
| 353 |
+
break
|
| 354 |
+
|
| 355 |
+
protein = self._safe_float(nutriments.get("proteins_100g", 0))
|
| 356 |
+
fat = self._safe_float(nutriments.get("fat_100g", 0))
|
| 357 |
+
carbs = self._safe_float(nutriments.get("carbohydrates_100g", 0))
|
| 358 |
+
|
| 359 |
+
# Basic validation
|
| 360 |
+
if calories <= 0 or calories > 3000:
|
| 361 |
+
return None
|
| 362 |
+
|
| 363 |
+
# Optional nutrients
|
| 364 |
+
fiber = self._safe_float(nutriments.get("fiber_100g")) or None
|
| 365 |
+
sugar = self._safe_float(nutriments.get("sugars_100g")) or None
|
| 366 |
+
sodium = self._safe_float(nutriments.get("sodium_100g")) or None
|
| 367 |
+
|
| 368 |
+
# Convert sodium g to mg
|
| 369 |
+
if sodium and sodium > 0:
|
| 370 |
+
sodium = sodium * 1000 if sodium < 50 else sodium
|
| 371 |
+
|
| 372 |
+
return NutritionInfo(
|
| 373 |
+
calories=calories,
|
| 374 |
+
protein=protein,
|
| 375 |
+
fat=fat,
|
| 376 |
+
carbs=carbs,
|
| 377 |
+
fiber=fiber,
|
| 378 |
+
sugar=sugar,
|
| 379 |
+
sodium=sodium
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
except Exception as e:
|
| 383 |
+
logger.debug(f"Nutrition extraction failed: {e}")
|
| 384 |
+
return None
|
| 385 |
+
|
| 386 |
+
def _validate_nutrition(self, nutrition: NutritionInfo) -> bool:
|
| 387 |
+
"""Validate nutrition data makes sense"""
|
| 388 |
+
return (50 <= nutrition.calories <= 2000 and
|
| 389 |
+
0 <= nutrition.protein <= 100 and
|
| 390 |
+
0 <= nutrition.fat <= 100 and
|
| 391 |
+
0 <= nutrition.carbs <= 100)
|
| 392 |
+
|
| 393 |
+
# Global model instances
|
| 394 |
+
food_model = None
|
| 395 |
+
|
| 396 |
+
@asynccontextmanager
|
| 397 |
+
async def lifespan(app: FastAPI):
|
| 398 |
+
"""Initialize models on startup"""
|
| 399 |
+
global food_model
|
| 400 |
+
logger.info("🚀 Starting Fast Food Recognition Backend...")
|
| 401 |
+
|
| 402 |
+
# Load optimized food recognition model
|
| 403 |
+
food_model = FoodRecognitionModel()
|
| 404 |
+
|
| 405 |
+
logger.info("✅ Backend ready for fast food recognition!")
|
| 406 |
+
yield
|
| 407 |
+
|
| 408 |
+
# Cleanup on shutdown
|
| 409 |
+
logger.info("🛑 Shutting down backend...")
|
| 410 |
+
|
| 411 |
+
# FastAPI app
|
| 412 |
+
app = FastAPI(
|
| 413 |
+
title="Fast Food Recognition Backend",
|
| 414 |
+
description="Optimized CLIP-based food identification with Open Food Facts nutrition",
|
| 415 |
+
version="3.0.0",
|
| 416 |
+
lifespan=lifespan
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
# CORS middleware
|
| 420 |
+
app.add_middleware(
|
| 421 |
+
CORSMiddleware,
|
| 422 |
+
allow_origins=["*"],
|
| 423 |
+
allow_credentials=True,
|
| 424 |
+
allow_methods=["*"],
|
| 425 |
+
allow_headers=["*"],
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
# Utility functions
|
| 429 |
+
def validate_image(file: UploadFile) -> Image.Image:
|
| 430 |
+
"""Validate and load uploaded image"""
|
| 431 |
+
try:
|
| 432 |
+
image_data = file.file.read()
|
| 433 |
+
image = Image.open(BytesIO(image_data))
|
| 434 |
+
|
| 435 |
+
# Convert to RGB if needed
|
| 436 |
+
if image.mode != 'RGB':
|
| 437 |
+
image = image.convert('RGB')
|
| 438 |
+
|
| 439 |
+
return image
|
| 440 |
+
|
| 441 |
+
except Exception as e:
|
| 442 |
+
raise HTTPException(
|
| 443 |
+
status_code=400,
|
| 444 |
+
detail=f"Invalid image file: {str(e)}"
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
async def validate_image_from_url(image_url: str) -> Image.Image:
|
| 448 |
+
"""Validate and load image from URL"""
|
| 449 |
+
try:
|
| 450 |
+
async with aiohttp.ClientSession() as session:
|
| 451 |
+
async with session.get(image_url) as response:
|
| 452 |
+
if response.status != 200:
|
| 453 |
+
raise HTTPException(status_code=400, detail="Could not fetch image from URL")
|
| 454 |
+
|
| 455 |
+
image_data = await response.read()
|
| 456 |
+
image = Image.open(BytesIO(image_data))
|
| 457 |
+
|
| 458 |
+
if image.mode != 'RGB':
|
| 459 |
+
image = image.convert('RGB')
|
| 460 |
+
|
| 461 |
+
return image
|
| 462 |
+
|
| 463 |
+
except Exception as e:
|
| 464 |
+
raise HTTPException(
|
| 465 |
+
status_code=400,
|
| 466 |
+
detail=f"Invalid image URL: {str(e)}"
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
# API Endpoints
|
| 470 |
+
|
| 471 |
+
@app.get("/")
|
| 472 |
+
async def root():
|
| 473 |
+
"""Health check endpoint"""
|
| 474 |
+
return {
|
| 475 |
+
"status": "healthy",
|
| 476 |
+
"message": "Fast Food Recognition Backend",
|
| 477 |
+
"version": "3.0.0",
|
| 478 |
+
"device": str(config.DEVICE)
|
| 479 |
+
}
|
| 480 |
+
|
| 481 |
+
@app.get("/health")
|
| 482 |
+
async def health_check():
|
| 483 |
+
"""Detailed health check"""
|
| 484 |
+
return {
|
| 485 |
+
"status": "healthy",
|
| 486 |
+
"model_loaded": food_model is not None,
|
| 487 |
+
"device": config.DEVICE,
|
| 488 |
+
"food_pipeline_loaded": food_model.food_pipeline is not None if food_model else False,
|
| 489 |
+
"model_type": "Professional Food Recognition Models"
|
| 490 |
+
}
|
| 491 |
+
|
| 492 |
+
@app.post("/analyze", response_model=FoodAnalysisResponse)
|
| 493 |
+
async def analyze_food_image(
|
| 494 |
+
file: UploadFile = File(..., description="Food image to analyze"),
|
| 495 |
+
top_alternatives: int = Query(3, ge=1, le=5, description="Number of alternative predictions")
|
| 496 |
+
):
|
| 497 |
+
"""
|
| 498 |
+
Fast food image analysis with optimized CLIP recognition
|
| 499 |
+
"""
|
| 500 |
+
try:
|
| 501 |
+
start_time = time.time()
|
| 502 |
+
|
| 503 |
+
# Validate and load image
|
| 504 |
+
image = validate_image(file)
|
| 505 |
+
logger.info(f"Image loaded in {time.time() - start_time:.2f}s")
|
| 506 |
+
|
| 507 |
+
# Fast food recognition - always returns high confidence results
|
| 508 |
+
food_name, confidence, alternatives = food_model.recognize_food(image)
|
| 509 |
+
|
| 510 |
+
# Get nutrition data
|
| 511 |
+
nutrition_start = time.time()
|
| 512 |
+
async with FastNutritionClient() as nutrition_client:
|
| 513 |
+
nutrition_result = await nutrition_client.get_nutrition(food_name)
|
| 514 |
+
|
| 515 |
+
if not nutrition_result:
|
| 516 |
+
raise HTTPException(
|
| 517 |
+
status_code=422,
|
| 518 |
+
detail=f"No nutrition data found for '{food_name}'. Try a different image or food type."
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
nutrition, source, product_id = nutrition_result
|
| 522 |
+
logger.info(f"Nutrition lookup completed in {time.time() - nutrition_start:.2f}s")
|
| 523 |
+
|
| 524 |
+
total_time = time.time() - start_time
|
| 525 |
+
logger.info(f"🎯 Complete analysis in {total_time:.2f}s: {food_name} ({confidence:.3f})")
|
| 526 |
+
|
| 527 |
+
return FoodAnalysisResponse(
|
| 528 |
+
label=food_name,
|
| 529 |
+
confidence=confidence,
|
| 530 |
+
nutrition=nutrition,
|
| 531 |
+
alternatives=alternatives[:top_alternatives],
|
| 532 |
+
source=source,
|
| 533 |
+
off_product_id=product_id
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
except HTTPException:
|
| 537 |
+
raise
|
| 538 |
+
except Exception as e:
|
| 539 |
+
logger.error(f"Analysis failed: {e}")
|
| 540 |
+
raise HTTPException(status_code=500, detail=f"Internal analysis error: {str(e)}")
|
| 541 |
+
|
| 542 |
+
@app.post("/analyze-url", response_model=FoodAnalysisResponse)
|
| 543 |
+
async def analyze_food_image_from_url(
|
| 544 |
+
image_url: str = Query(..., description="URL of food image to analyze"),
|
| 545 |
+
top_alternatives: int = Query(3, ge=1, le=5, description="Number of alternative predictions")
|
| 546 |
+
):
|
| 547 |
+
"""
|
| 548 |
+
Fast food image analysis from URL
|
| 549 |
+
"""
|
| 550 |
+
try:
|
| 551 |
+
start_time = time.time()
|
| 552 |
+
|
| 553 |
+
# Load image from URL
|
| 554 |
+
image = await validate_image_from_url(image_url)
|
| 555 |
+
|
| 556 |
+
# Fast food recognition - always returns high confidence results
|
| 557 |
+
food_name, confidence, alternatives = food_model.recognize_food(image)
|
| 558 |
+
|
| 559 |
+
# Get nutrition data
|
| 560 |
+
async with FastNutritionClient() as nutrition_client:
|
| 561 |
+
nutrition_result = await nutrition_client.get_nutrition(food_name)
|
| 562 |
+
|
| 563 |
+
if not nutrition_result:
|
| 564 |
+
raise HTTPException(
|
| 565 |
+
status_code=422,
|
| 566 |
+
detail=f"No nutrition data found for '{food_name}'"
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
nutrition, source, product_id = nutrition_result
|
| 570 |
+
|
| 571 |
+
total_time = time.time() - start_time
|
| 572 |
+
logger.info(f"🎯 URL analysis completed in {total_time:.2f}s: {food_name}")
|
| 573 |
+
|
| 574 |
+
return FoodAnalysisResponse(
|
| 575 |
+
label=food_name,
|
| 576 |
+
confidence=confidence,
|
| 577 |
+
nutrition=nutrition,
|
| 578 |
+
alternatives=alternatives[:top_alternatives],
|
| 579 |
+
source=source,
|
| 580 |
+
off_product_id=product_id
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
except HTTPException:
|
| 584 |
+
raise
|
| 585 |
+
except Exception as e:
|
| 586 |
+
logger.error(f"URL analysis failed: {e}")
|
| 587 |
+
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
|
| 588 |
+
|
| 589 |
+
@app.get("/search-nutrition/{food_name}")
|
| 590 |
+
async def search_nutrition_data(food_name: str):
|
| 591 |
+
"""
|
| 592 |
+
Search for nutrition information for a specific food item
|
| 593 |
+
"""
|
| 594 |
+
try:
|
| 595 |
+
async with FastNutritionClient() as nutrition_client:
|
| 596 |
+
nutrition_result = await nutrition_client.get_nutrition(food_name)
|
| 597 |
+
|
| 598 |
+
if not nutrition_result:
|
| 599 |
+
raise HTTPException(
|
| 600 |
+
status_code=404,
|
| 601 |
+
detail=f"No nutrition data found for '{food_name}'"
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
nutrition, source, product_id = nutrition_result
|
| 605 |
+
|
| 606 |
+
return {
|
| 607 |
+
"food_name": food_name,
|
| 608 |
+
"nutrition": nutrition,
|
| 609 |
+
"source": source,
|
| 610 |
+
"off_product_id": product_id
|
| 611 |
+
}
|
| 612 |
+
|
| 613 |
+
except HTTPException:
|
| 614 |
+
raise
|
| 615 |
+
except Exception as e:
|
| 616 |
+
logger.error(f"Nutrition search failed: {e}")
|
| 617 |
+
raise HTTPException(status_code=500, detail=f"Search failed: {str(e)}")
|
| 618 |
+
|
| 619 |
+
# Global exception handler
|
| 620 |
+
@app.exception_handler(Exception)
|
| 621 |
+
async def global_exception_handler(request, exc):
|
| 622 |
+
logger.error(f"Global exception: {exc}")
|
| 623 |
+
return JSONResponse(
|
| 624 |
+
status_code=500,
|
| 625 |
+
content={
|
| 626 |
+
"error": "Internal server error",
|
| 627 |
+
"detail": "An unexpected error occurred"
|
| 628 |
+
}
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
if __name__ == "__main__":
|
| 632 |
+
# Create backend directory if it doesn't exist
|
| 633 |
+
backend_dir = Path(__file__).parent
|
| 634 |
+
backend_dir.mkdir(exist_ok=True)
|
| 635 |
+
|
| 636 |
+
# Run the server with configuration from Config
|
| 637 |
+
uvicorn.run(
|
| 638 |
+
"app:app",
|
| 639 |
+
host=config.HOST,
|
| 640 |
+
port=config.PORT,
|
| 641 |
+
reload=True,
|
| 642 |
+
log_level="info"
|
| 643 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core FastAPI and server requirements
|
| 2 |
+
fastapi==0.104.1
|
| 3 |
+
uvicorn[standard]==0.24.0
|
| 4 |
+
|
| 5 |
+
# Machine Learning and Image Processing (optimized)
|
| 6 |
+
torch>=2.0.0
|
| 7 |
+
torchvision>=0.15.0
|
| 8 |
+
Pillow>=10.0.0
|
| 9 |
+
|
| 10 |
+
# Lightweight transformers for CLIP only
|
| 11 |
+
transformers>=4.30.0
|
| 12 |
+
|
| 13 |
+
# HTTP and API client
|
| 14 |
+
aiohttp>=3.8.0
|
| 15 |
+
|
| 16 |
+
# Data validation and serialization
|
| 17 |
+
pydantic>=2.0.0
|
| 18 |
+
|
| 19 |
+
# Utilities
|
| 20 |
+
python-multipart>=0.0.6
|