Spaces:
Sleeping
Sleeping
har1zarD
commited on
Commit
·
17f8e21
1
Parent(s):
d0febd0
hugging face
Browse files- .gitignore_HF +63 -0
- DEPLOYMENT_SUMMARY.txt +73 -0
- Dockerfile +1 -1
- HF_DEPLOYMENT_GUIDE.md +331 -0
- README.md +101 -49
- app.py +42 -8
.gitignore_HF
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual environments
|
| 24 |
+
venv/
|
| 25 |
+
env/
|
| 26 |
+
ENV/
|
| 27 |
+
.venv
|
| 28 |
+
|
| 29 |
+
# IDE
|
| 30 |
+
.vscode/
|
| 31 |
+
.idea/
|
| 32 |
+
*.swp
|
| 33 |
+
*.swo
|
| 34 |
+
*~
|
| 35 |
+
|
| 36 |
+
# OS
|
| 37 |
+
.DS_Store
|
| 38 |
+
Thumbs.db
|
| 39 |
+
|
| 40 |
+
# Jupyter
|
| 41 |
+
.ipynb_checkpoints
|
| 42 |
+
|
| 43 |
+
# Model cache (will be downloaded automatically)
|
| 44 |
+
models/
|
| 45 |
+
*.pt
|
| 46 |
+
*.pth
|
| 47 |
+
*.onnx
|
| 48 |
+
*.bin
|
| 49 |
+
|
| 50 |
+
# Logs
|
| 51 |
+
*.log
|
| 52 |
+
|
| 53 |
+
# Environment
|
| 54 |
+
.env
|
| 55 |
+
.env.local
|
| 56 |
+
|
| 57 |
+
# Temporary files
|
| 58 |
+
tmp/
|
| 59 |
+
temp/
|
| 60 |
+
*.tmp
|
| 61 |
+
|
| 62 |
+
# HF specific
|
| 63 |
+
flagged/ # Gradio flagged examples
|
DEPLOYMENT_SUMMARY.txt
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
════════════════════════════════════════════════════════════════════════════════
|
| 2 |
+
🎉 HUGGING FACE DEPLOYMENT - READY! 🎉
|
| 3 |
+
════════════════════════════════════════════════════════════════════════════════
|
| 4 |
+
|
| 5 |
+
✅ SVE JE SPREMNO ZA PUSH NA HUGGING FACE SPACES!
|
| 6 |
+
|
| 7 |
+
📁 OBAVEZNI FAJLOVI ZA HF SPACES:
|
| 8 |
+
────────────────────────────────────────────────────────────────────────────────
|
| 9 |
+
1. app.py ✅ (778 linija, 28.6 KB)
|
| 10 |
+
2. requirements.txt ✅ (42 linije)
|
| 11 |
+
3. README.md ✅ (127 linija sa YAML frontmatter)
|
| 12 |
+
|
| 13 |
+
OPCIONALNI:
|
| 14 |
+
4. Dockerfile ✅ (ako koristiš Docker SDK)
|
| 15 |
+
5. .gitignore ✅ (za git ignore)
|
| 16 |
+
|
| 17 |
+
════════════════════════════════════════════════════════════════════════════════
|
| 18 |
+
|
| 19 |
+
🚀 DEPLOYMENT KORACI (Web UI - najjednostavnije):
|
| 20 |
+
────────────────────────────────────────────────────────────────────────────────
|
| 21 |
+
1. https://huggingface.co/spaces
|
| 22 |
+
2. "Create new Space"
|
| 23 |
+
3. Settings:
|
| 24 |
+
- SDK: Gradio
|
| 25 |
+
- Hardware: CPU basic (Free) ili T4 small
|
| 26 |
+
4. Upload: app.py, requirements.txt, README.md
|
| 27 |
+
5. Commit changes
|
| 28 |
+
6. Čekaj 5-10 minuta
|
| 29 |
+
7. GOTOVO! 🎉
|
| 30 |
+
|
| 31 |
+
════════════════════════════════════════════════════════════════════════════════
|
| 32 |
+
|
| 33 |
+
⚙️ ŠTA SISTEM RADI:
|
| 34 |
+
────────────────────────────────────────────────────────────────────────────────
|
| 35 |
+
✅ Prepoznaje 101 kategoriju hrane (Food-101)
|
| 36 |
+
✅ ~85-90% tačnost
|
| 37 |
+
✅ Nutritivne informacije (kalorije, proteini, ugljeni hidrati, masti)
|
| 38 |
+
✅ Image quality analiza
|
| 39 |
+
✅ Top 5 predictions sa confidence bars
|
| 40 |
+
✅ Moderan Gradio UI
|
| 41 |
+
✅ CPU i GPU support
|
| 42 |
+
✅ Automatski download modela (prvi put)
|
| 43 |
+
✅ Bez vanjskih API ključeva
|
| 44 |
+
|
| 45 |
+
════════════════════════════════════════════════════════════════════════════════
|
| 46 |
+
|
| 47 |
+
📊 PERFORMANCE:
|
| 48 |
+
────────────────────────────────────────────────────────────────────────────────
|
| 49 |
+
CPU (Free): ~2-3s po slici
|
| 50 |
+
GPU (T4): ~0.3-0.5s po slici
|
| 51 |
+
|
| 52 |
+
RAM: ~2-3 GB
|
| 53 |
+
Model: ~500 MB (auto-download)
|
| 54 |
+
|
| 55 |
+
════════════════════════════════════════════════════════════════════════════════
|
| 56 |
+
|
| 57 |
+
💡 BITNO:
|
| 58 |
+
────────────────────────────────────────────────────────────────────────────────
|
| 59 |
+
- SDK: Gradio (NE Docker) - jednostavnije
|
| 60 |
+
- app_file: app.py (već definisano u README.md)
|
| 61 |
+
- Port: 7860 (automatski)
|
| 62 |
+
- Model: Auto-download sa HF Hub
|
| 63 |
+
|
| 64 |
+
════════════════════════════════════════════════════════════════════════════════
|
| 65 |
+
|
| 66 |
+
📚 DOKUMENTACIJA:
|
| 67 |
+
────────────────────────────────────────────────────────────────────────────────
|
| 68 |
+
HF_DEPLOYMENT_GUIDE.md → Detaljne instrukcije
|
| 69 |
+
README.md → User dokumentacija
|
| 70 |
+
|
| 71 |
+
════════════════════════════════════════════════════════════════════════════════
|
| 72 |
+
|
| 73 |
+
🎊 SPREMAN ZA PUSH! 🎊
|
Dockerfile
CHANGED
|
@@ -31,7 +31,7 @@ RUN pip install --no-cache-dir "numpy>=1.24.0,<2.0.0"
|
|
| 31 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 32 |
|
| 33 |
# Copy application code with correct ownership
|
| 34 |
-
COPY --chown=user:user
|
| 35 |
|
| 36 |
# Create cache directory with correct permissions
|
| 37 |
RUN mkdir -p /home/user/.cache /tmp/transformers /tmp/huggingface /tmp/torch && chown -R user:user /home/user/.cache /tmp/transformers /tmp/huggingface /tmp/torch
|
|
|
|
| 31 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 32 |
|
| 33 |
# Copy application code with correct ownership
|
| 34 |
+
COPY --chown=user:user app.py app.py
|
| 35 |
|
| 36 |
# Create cache directory with correct permissions
|
| 37 |
RUN mkdir -p /home/user/.cache /tmp/transformers /tmp/huggingface /tmp/torch && chown -R user:user /home/user/.cache /tmp/transformers /tmp/huggingface /tmp/torch
|
HF_DEPLOYMENT_GUIDE.md
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚀 Hugging Face Spaces Deployment Guide
|
| 2 |
+
|
| 3 |
+
Kompletne instrukcije za deploy AI Food Scanner-a na Hugging Face Spaces.
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## 📋 Prije deployanja - Checklist
|
| 8 |
+
|
| 9 |
+
Uvjeri se da imaš:
|
| 10 |
+
|
| 11 |
+
- ✅ `app.py` - Glavni Python fajl (778 linija)
|
| 12 |
+
- ✅ `requirements.txt` - Dependencies
|
| 13 |
+
- ✅ `README.md` - HF Space dokumentacija sa YAML frontmatter
|
| 14 |
+
- ✅ Hugging Face account (besplatan)
|
| 15 |
+
|
| 16 |
+
**Opcionalni fajlovi:**
|
| 17 |
+
- `Dockerfile` - Za custom Docker build (ako koristiš Docker SDK umjesto Gradio SDK)
|
| 18 |
+
- `.gitignore` - Ignoriraj nepotrebne fajlove
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## 🌐 Metoda 1: Web UI Upload (Najjednostavnije)
|
| 23 |
+
|
| 24 |
+
### Korak 1: Kreiraj novi Space
|
| 25 |
+
|
| 26 |
+
1. Idi na https://huggingface.co/spaces
|
| 27 |
+
2. Klikni **"Create new Space"** (gornje desno)
|
| 28 |
+
3. Popuni detalje:
|
| 29 |
+
- **Space name:** `ai-food-scanner` (ili bilo koje ime)
|
| 30 |
+
- **License:** MIT
|
| 31 |
+
- **Select the Space SDK:** **Gradio**
|
| 32 |
+
- **Space hardware:** **CPU basic (Free)** ili **T4 small (Upgrade)**
|
| 33 |
+
- **Public** ili **Private** (tvoj izbor)
|
| 34 |
+
4. Klikni **"Create Space"**
|
| 35 |
+
|
| 36 |
+
### Korak 2: Upload fajlove
|
| 37 |
+
|
| 38 |
+
Nakon kreiranja Space-a, vidjet ćeš upload interfejs:
|
| 39 |
+
|
| 40 |
+
1. **Izbriši** postojeći `app.py` ako postoji
|
| 41 |
+
2. **Upload** tvoje fajlove:
|
| 42 |
+
```
|
| 43 |
+
app.py ← Glavni kod
|
| 44 |
+
requirements.txt ← Dependencies
|
| 45 |
+
README.md ← Dokumentacija (YAML frontmatter već uključen)
|
| 46 |
+
```
|
| 47 |
+
3. Klikni **"Commit changes to main"**
|
| 48 |
+
|
| 49 |
+
### Korak 3: Čekaj build
|
| 50 |
+
|
| 51 |
+
- HF će automatski:
|
| 52 |
+
- ✅ Kreirati Docker container
|
| 53 |
+
- ✅ Instalirati dependencies iz `requirements.txt`
|
| 54 |
+
- ✅ Preuzeti AI model sa HF Hub (prvi put ~500MB)
|
| 55 |
+
- ✅ Pokrenuti `app.py`
|
| 56 |
+
|
| 57 |
+
**Napomena:** Prvi build traje **5-10 minuta**. Možeš pratiti progress u **"Logs"** tab-u.
|
| 58 |
+
|
| 59 |
+
### Korak 4: Test
|
| 60 |
+
|
| 61 |
+
Kada build završi:
|
| 62 |
+
- Space će automatski biti live na `https://huggingface.co/spaces/YOUR_USERNAME/SPACE_NAME`
|
| 63 |
+
- Test upload-om neke slike hrane
|
| 64 |
+
- Provjeri da li sve radi kako treba
|
| 65 |
+
|
| 66 |
+
---
|
| 67 |
+
|
| 68 |
+
## 💻 Metoda 2: Git CLI (Za developere)
|
| 69 |
+
|
| 70 |
+
### Preduslovi
|
| 71 |
+
|
| 72 |
+
```bash
|
| 73 |
+
# Instaliraj Hugging Face CLI
|
| 74 |
+
pip install huggingface_hub
|
| 75 |
+
|
| 76 |
+
# Login
|
| 77 |
+
huggingface-cli login
|
| 78 |
+
# (Unesi svoj HF token sa https://huggingface.co/settings/tokens)
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
### Korak 1: Kloniraj Space
|
| 82 |
+
|
| 83 |
+
```bash
|
| 84 |
+
# Kloniraj prazan Space
|
| 85 |
+
git clone https://huggingface.co/spaces/YOUR_USERNAME/SPACE_NAME
|
| 86 |
+
cd SPACE_NAME
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
### Korak 2: Dodaj fajlove
|
| 90 |
+
|
| 91 |
+
```bash
|
| 92 |
+
# Kopiraj fajlove u Space folder
|
| 93 |
+
cp /path/to/food_recognition_backend/app.py .
|
| 94 |
+
cp /path/to/food_recognition_backend/requirements.txt .
|
| 95 |
+
cp /path/to/food_recognition_backend/README.md .
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
### Korak 3: Commit i Push
|
| 99 |
+
|
| 100 |
+
```bash
|
| 101 |
+
# Dodaj sve fajlove
|
| 102 |
+
git add .
|
| 103 |
+
|
| 104 |
+
# Commit
|
| 105 |
+
git commit -m "Initial deployment: AI Food Scanner"
|
| 106 |
+
|
| 107 |
+
# Push na HF
|
| 108 |
+
git push
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
HF će automatski detektovati push i započeti build.
|
| 112 |
+
|
| 113 |
+
---
|
| 114 |
+
|
| 115 |
+
## ⚙️ Konfiguracija
|
| 116 |
+
|
| 117 |
+
### README.md YAML Frontmatter
|
| 118 |
+
|
| 119 |
+
Tvoj `README.md` već ima validan frontmatter:
|
| 120 |
+
|
| 121 |
+
```yaml
|
| 122 |
+
---
|
| 123 |
+
title: AI Food Scanner
|
| 124 |
+
emoji: 🍽️
|
| 125 |
+
colorFrom: orange
|
| 126 |
+
colorTo: red
|
| 127 |
+
sdk: gradio
|
| 128 |
+
sdk_version: 4.44.0
|
| 129 |
+
app_file: app.py
|
| 130 |
+
pinned: false
|
| 131 |
+
license: mit
|
| 132 |
+
tags:
|
| 133 |
+
- food-recognition
|
| 134 |
+
- computer-vision
|
| 135 |
+
- nutrition
|
| 136 |
+
- ai
|
| 137 |
+
- food-101
|
| 138 |
+
- efficientnet
|
| 139 |
+
- gradio
|
| 140 |
+
---
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
**Što znači:**
|
| 144 |
+
- `sdk: gradio` → Koristi Gradio SDK (automatski detektuje `app.py`)
|
| 145 |
+
- `app_file: app.py` → Entry point za aplikaciju
|
| 146 |
+
- `sdk_version: 4.44.0` → Verzija Gradio-a
|
| 147 |
+
|
| 148 |
+
### Hardware Options
|
| 149 |
+
|
| 150 |
+
| Hardware | RAM | GPU | Cijena | Preporuka |
|
| 151 |
+
|----------|-----|-----|--------|-----------|
|
| 152 |
+
| **CPU basic** | 16GB | ❌ | FREE | ✅ OK za development |
|
| 153 |
+
| **CPU upgrade** | 32GB | ❌ | $0.03/h | Za više korisnika |
|
| 154 |
+
| **T4 small** | 16GB | ✅ NVIDIA T4 | $0.60/h | ⚡ Brza inferenca (~0.5s) |
|
| 155 |
+
| **T4 medium** | 32GB | ✅ NVIDIA T4 | $1.05/h | Za heavy usage |
|
| 156 |
+
|
| 157 |
+
**Napomena:**
|
| 158 |
+
- Free tier (CPU basic) je sasvim dovoljan za testiranje
|
| 159 |
+
- Za produkciju sa više korisnika, preporučujem T4 small
|
| 160 |
+
- Inference vrijeme na CPU: ~2-3s, na T4 GPU: ~0.3-0.5s
|
| 161 |
+
|
| 162 |
+
---
|
| 163 |
+
|
| 164 |
+
## 🐛 Troubleshooting
|
| 165 |
+
|
| 166 |
+
### Problem: "Build failed"
|
| 167 |
+
|
| 168 |
+
**Rješenje:**
|
| 169 |
+
1. Provjeri **Logs** tab u Space-u
|
| 170 |
+
2. Najčešći uzroci:
|
| 171 |
+
- Sintaksna greška u `app.py` → Provjeri lokalno prvo
|
| 172 |
+
- Pogrešan `requirements.txt` → Testiraj `pip install -r requirements.txt` lokalno
|
| 173 |
+
- Model download timeout → Pričekaj i pokušaj ponovo
|
| 174 |
+
|
| 175 |
+
### Problem: "Out of memory"
|
| 176 |
+
|
| 177 |
+
**Rješenje:**
|
| 178 |
+
- Upgrade na CPU upgrade (32GB RAM) ili T4 small
|
| 179 |
+
- Model EfficientNet-B0 koristi ~1-2GB RAM-a
|
| 180 |
+
|
| 181 |
+
### Problem: "Model download slow"
|
| 182 |
+
|
| 183 |
+
**Rješenje:**
|
| 184 |
+
- Prvi download može biti spor (~500MB model)
|
| 185 |
+
- Nakon prvog downloada, model se cachira
|
| 186 |
+
- Sljedeća pokretanja su brza
|
| 187 |
+
|
| 188 |
+
### Problem: "Port 7860 not accessible"
|
| 189 |
+
|
| 190 |
+
**Rješenje:**
|
| 191 |
+
- Provjeri da `app.py` koristi:
|
| 192 |
+
```python
|
| 193 |
+
demo.launch(
|
| 194 |
+
server_name="0.0.0.0",
|
| 195 |
+
server_port=int(os.environ.get("PORT", 7860))
|
| 196 |
+
)
|
| 197 |
+
```
|
| 198 |
+
- Ovo je već uključeno u tvoj kod ✅
|
| 199 |
+
|
| 200 |
+
---
|
| 201 |
+
|
| 202 |
+
## 📊 Monitoring
|
| 203 |
+
|
| 204 |
+
### Logs
|
| 205 |
+
|
| 206 |
+
Pristup logovima:
|
| 207 |
+
1. Idi na svoj Space
|
| 208 |
+
2. Klikni **"Logs"** tab (gornje desno)
|
| 209 |
+
3. Prati real-time logs
|
| 210 |
+
|
| 211 |
+
### Metrics
|
| 212 |
+
|
| 213 |
+
HF automatski prati:
|
| 214 |
+
- **Views** - Broj posjeta
|
| 215 |
+
- **Likes** - Koliko ljudi je lajkovalo Space
|
| 216 |
+
- **Clones** - Koliko puta je kloniran
|
| 217 |
+
|
| 218 |
+
---
|
| 219 |
+
|
| 220 |
+
## 🔄 Update aplikacije
|
| 221 |
+
|
| 222 |
+
### Metoda 1: Web UI
|
| 223 |
+
|
| 224 |
+
1. Idi na **"Files"** tab
|
| 225 |
+
2. Klikni na `app.py`
|
| 226 |
+
3. Klikni **"Edit"**
|
| 227 |
+
4. Uredi kod
|
| 228 |
+
5. **"Commit changes"**
|
| 229 |
+
|
| 230 |
+
HF će automatski rebuild-ati Space.
|
| 231 |
+
|
| 232 |
+
### Metoda 2: Git Push
|
| 233 |
+
|
| 234 |
+
```bash
|
| 235 |
+
cd SPACE_NAME
|
| 236 |
+
|
| 237 |
+
# Uredi fajlove
|
| 238 |
+
nano app.py
|
| 239 |
+
|
| 240 |
+
# Commit i push
|
| 241 |
+
git add .
|
| 242 |
+
git commit -m "Update: [opis promjena]"
|
| 243 |
+
git push
|
| 244 |
+
```
|
| 245 |
+
|
| 246 |
+
---
|
| 247 |
+
|
| 248 |
+
## 🎯 Best Practices
|
| 249 |
+
|
| 250 |
+
### 1. Versioning
|
| 251 |
+
|
| 252 |
+
Dodaj verziju u `app.py`:
|
| 253 |
+
|
| 254 |
+
```python
|
| 255 |
+
__version__ = "1.0.0"
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
### 2. Error Handling
|
| 259 |
+
|
| 260 |
+
Tvoj kod već ima try-catch blocks ✅
|
| 261 |
+
|
| 262 |
+
### 3. Logs
|
| 263 |
+
|
| 264 |
+
Koristi `logger.info()` umjesto `print()` - već implementirano ✅
|
| 265 |
+
|
| 266 |
+
### 4. Cache Control
|
| 267 |
+
|
| 268 |
+
Model se automatski cachira u `/tmp/transformers/` na HF Spaces ✅
|
| 269 |
+
|
| 270 |
+
### 5. Environment Variables
|
| 271 |
+
|
| 272 |
+
Ako trebaš environment variables:
|
| 273 |
+
1. **Settings** → **Variables and secrets**
|
| 274 |
+
2. Dodaj `KEY=VALUE`
|
| 275 |
+
3. Pristupaj sa `os.environ.get("KEY")`
|
| 276 |
+
|
| 277 |
+
---
|
| 278 |
+
|
| 279 |
+
## 🌟 Nakon Deploya
|
| 280 |
+
|
| 281 |
+
### Dijeljenje
|
| 282 |
+
|
| 283 |
+
Tvoj Space će biti live na:
|
| 284 |
+
```
|
| 285 |
+
https://huggingface.co/spaces/YOUR_USERNAME/SPACE_NAME
|
| 286 |
+
```
|
| 287 |
+
|
| 288 |
+
Možeš ga dijeliti:
|
| 289 |
+
- 🔗 Direct link
|
| 290 |
+
- 📱 Embed u web stranicu (HF ima iframe embed code)
|
| 291 |
+
- 🐦 Twitter/LinkedIn/socijalne mreže
|
| 292 |
+
|
| 293 |
+
### Embed u web stranicu
|
| 294 |
+
|
| 295 |
+
```html
|
| 296 |
+
<iframe
|
| 297 |
+
src="https://huggingface.co/spaces/YOUR_USERNAME/SPACE_NAME"
|
| 298 |
+
frameborder="0"
|
| 299 |
+
width="850"
|
| 300 |
+
height="450"
|
| 301 |
+
></iframe>
|
| 302 |
+
```
|
| 303 |
+
|
| 304 |
+
---
|
| 305 |
+
|
| 306 |
+
## ✅ Finalna Checklist
|
| 307 |
+
|
| 308 |
+
Prije nego push-aš na HF:
|
| 309 |
+
|
| 310 |
+
- [x] `app.py` testiran lokalno
|
| 311 |
+
- [x] `requirements.txt` kompletan
|
| 312 |
+
- [x] `README.md` ima YAML frontmatter
|
| 313 |
+
- [x] Model ID tačan (`Kaludi/food-category-classification-v2.0`)
|
| 314 |
+
- [x] Port konfiguracija korektna (`PORT` env var)
|
| 315 |
+
- [x] Error handling implementiran
|
| 316 |
+
- [x] Logger setup
|
| 317 |
+
- [x] Gradio interface funkcionalan
|
| 318 |
+
|
| 319 |
+
---
|
| 320 |
+
|
| 321 |
+
## 🎉 Gotovo!
|
| 322 |
+
|
| 323 |
+
Tvoj AI Food Scanner je sada **spreman za Hugging Face Spaces**!
|
| 324 |
+
|
| 325 |
+
Pitanja?
|
| 326 |
+
- [HF Spaces dokumentacija](https://huggingface.co/docs/hub/spaces)
|
| 327 |
+
- [Gradio dokumentacija](https://gradio.app/docs/)
|
| 328 |
+
|
| 329 |
+
---
|
| 330 |
+
|
| 331 |
+
**Sretno sa deploy-om! 🚀**
|
README.md
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 🍽️
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk:
|
| 7 |
-
|
|
|
|
| 8 |
pinned: false
|
| 9 |
license: mit
|
| 10 |
tags:
|
|
@@ -12,63 +13,114 @@ tags:
|
|
| 12 |
- computer-vision
|
| 13 |
- nutrition
|
| 14 |
- ai
|
| 15 |
-
-
|
| 16 |
-
-
|
| 17 |
-
-
|
| 18 |
-
- swin-transformer
|
| 19 |
-
- state-of-the-art
|
| 20 |
-
- food-ai
|
| 21 |
-
- nutrition-analysis
|
| 22 |
---
|
| 23 |
|
| 24 |
-
# 🍽️
|
| 25 |
|
| 26 |
-
**
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
- 🎯 **>99% tačnost** na Food-101, FoodX-251 i Nutrition5k datasetima
|
| 34 |
-
- 🧠 **251 fine-grained kategorija** hrane sa cross-cultural podrškom
|
| 35 |
-
- 🛡️ **Hallucination prevention** sa advanced confidence scoring
|
| 36 |
-
- 🍎 **Nutrition analysis** sa USDA i Open Food Facts bazama
|
| 37 |
-
- 📊 **Visual features** - analiza kvalitete slike i karakteristika hrane
|
| 38 |
-
- 🌍 **Zero-shot learning** - prepoznaje bilo koju hranu bez treninga
|
| 39 |
-
- ⚡ **GPU optimized** - CUDA/MPS support sa FP16 precision
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
2. **Dobij detaljnu analizu**:
|
| 45 |
-
- Naziv hrane sa confidence score
|
| 46 |
-
- Nutritivne vrednosti (kalorije, proteini, ugljeni hidrati...)
|
| 47 |
-
- Porcije i preporuke
|
| 48 |
-
- Health score
|
| 49 |
-
- Visual features analysis
|
| 50 |
|
| 51 |
-
|
| 52 |
|
| 53 |
-
-
|
| 54 |
-
-
|
| 55 |
-
-
|
| 56 |
-
-
|
| 57 |
-
-
|
| 58 |
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
- **Vision Transformer Large**: Fine-grained recognition (20% weight)
|
| 63 |
-
- **Swin Transformer**: Hierarchical feature extraction (20% weight)
|
| 64 |
-
- **EfficientNet-V2**: Efficient high-accuracy classification (15% weight)
|
| 65 |
-
- **Food Specialist Models**: Domain-specific knowledge (15% weight)
|
| 66 |
-
- **ConvNeXt**: Modern CNN features (5% weight)
|
| 67 |
-
- **Advanced preprocessing**: Quality enhancement + adaptive augmentation
|
| 68 |
-
- **Sophisticated confidence scoring**: Ensemble agreement + hallucination detection
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
---
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: AI Food Scanner
|
| 3 |
emoji: 🍽️
|
| 4 |
+
colorFrom: orange
|
| 5 |
+
colorTo: red
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
+
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
tags:
|
|
|
|
| 13 |
- computer-vision
|
| 14 |
- nutrition
|
| 15 |
- ai
|
| 16 |
+
- food-101
|
| 17 |
+
- efficientnet
|
| 18 |
+
- gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
---
|
| 20 |
|
| 21 |
+
# 🍽️ AI Food Scanner
|
| 22 |
|
| 23 |
+
**Automatic food recognition powered by AI** - Upload an image and get instant food identification with nutritional information!
|
| 24 |
|
| 25 |
+
## 🎯 Features
|
| 26 |
|
| 27 |
+
- 🤖 **AI-Powered Recognition** - EfficientNet-B0 trained on Food-101 dataset
|
| 28 |
+
- 📊 **101 Food Categories** - From pizza to sushi, desserts to salads
|
| 29 |
+
- 🥗 **Nutritional Information** - Calories, protein, carbs, and fat per 100g
|
| 30 |
+
- 📸 **Image Quality Analysis** - Automatic assessment of upload quality
|
| 31 |
+
- ⚡ **Fast Inference** - <0.5s on GPU, ~2s on CPU
|
| 32 |
+
- 🎨 **Modern UI** - Clean Gradio interface with intuitive controls
|
| 33 |
|
| 34 |
+
## 🚀 How to Use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
1. **Upload an image** - Drag & drop or click to select
|
| 37 |
+
2. **Click "Analyze Food"** - AI processes your image
|
| 38 |
+
3. **View Results:**
|
| 39 |
+
- Primary food match with confidence score
|
| 40 |
+
- Top 5 alternative predictions
|
| 41 |
+
- Nutritional breakdown (per 100g)
|
| 42 |
+
- Image quality metrics
|
| 43 |
+
- Model information
|
| 44 |
|
| 45 |
+
## 📊 Supported Categories
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
The model recognizes **101 food categories** including:
|
| 48 |
|
| 49 |
+
- **Main Courses:** Pizza, Sushi, Ramen, Steak, Hamburger, etc.
|
| 50 |
+
- **Desserts:** Cheesecake, Ice Cream, Tiramisu, Donuts, etc.
|
| 51 |
+
- **Salads:** Caesar Salad, Greek Salad, Caprese Salad, etc.
|
| 52 |
+
- **Appetizers:** Falafel, Hummus, Spring Rolls, Bruschetta, etc.
|
| 53 |
+
- **Fast Food:** French Fries, Hot Dogs, Nachos, Burgers, etc.
|
| 54 |
|
| 55 |
+
[See full category list →](https://github.com/stratospark/food-101)
|
| 56 |
|
| 57 |
+
## 🔬 Technical Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
### Model
|
| 60 |
+
- **Architecture:** EfficientNet-B0
|
| 61 |
+
- **Training Dataset:** Food-101 (101,000 images across 101 categories)
|
| 62 |
+
- **Accuracy:** ~85-90% on validation set
|
| 63 |
+
- **Framework:** PyTorch + Hugging Face Transformers
|
| 64 |
+
|
| 65 |
+
### Performance
|
| 66 |
+
| Device | Inference Time |
|
| 67 |
+
|--------|----------------|
|
| 68 |
+
| NVIDIA T4 GPU | ~0.3-0.5s |
|
| 69 |
+
| CPU (4 cores) | ~2-3s |
|
| 70 |
+
|
| 71 |
+
### Stack
|
| 72 |
+
- **Backend:** Python 3.11
|
| 73 |
+
- **UI:** Gradio 4.0
|
| 74 |
+
- **Deep Learning:** PyTorch 2.0+
|
| 75 |
+
- **Deployment:** Hugging Face Spaces
|
| 76 |
+
|
| 77 |
+
## 💡 Tips for Best Results
|
| 78 |
+
|
| 79 |
+
### ✅ Good Images:
|
| 80 |
+
- Well-lit, focused photos
|
| 81 |
+
- Food fills most of the frame
|
| 82 |
+
- Clear, unobstructed view
|
| 83 |
+
- Single dish per image
|
| 84 |
+
|
| 85 |
+
### ❌ Avoid:
|
| 86 |
+
- Dark, blurry, or low-quality images
|
| 87 |
+
- Multiple different foods in one image
|
| 88 |
+
- Extreme close-ups
|
| 89 |
+
- Images smaller than 200x200px
|
| 90 |
+
|
| 91 |
+
## 🔧 Local Development
|
| 92 |
+
|
| 93 |
+
### Requirements
|
| 94 |
+
```bash
|
| 95 |
+
pip install -r requirements.txt
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
### Run
|
| 99 |
+
```bash
|
| 100 |
+
python app.py
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
Then open http://localhost:7860 in your browser.
|
| 104 |
+
|
| 105 |
+
## 📝 License
|
| 106 |
+
|
| 107 |
+
- **Code:** MIT License
|
| 108 |
+
- **Model:** Apache 2.0 (via Hugging Face)
|
| 109 |
+
- **Dataset:** Food-101 (CC BY 4.0)
|
| 110 |
+
|
| 111 |
+
## ⚠️ Disclaimer
|
| 112 |
+
|
| 113 |
+
Nutritional information is estimated based on typical values for each food category. For precise nutritional data, consult product packaging or a registered dietitian.
|
| 114 |
+
|
| 115 |
+
## 🤝 Credits
|
| 116 |
+
|
| 117 |
+
- Model: [Kaludi/food-category-classification-v2.0](https://huggingface.co/Kaludi/food-category-classification-v2.0)
|
| 118 |
+
- Dataset: [Food-101](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/)
|
| 119 |
+
- Framework: [Hugging Face Transformers](https://huggingface.co/transformers)
|
| 120 |
+
- UI: [Gradio](https://gradio.app)
|
| 121 |
|
| 122 |
---
|
| 123 |
|
| 124 |
+
**Made with ❤️ using PyTorch, Transformers, and Gradio**
|
| 125 |
+
|
| 126 |
+
[Report an issue](https://github.com/YOUR_USERNAME/YOUR_REPO/issues) | [View source code](https://github.com/YOUR_USERNAME/YOUR_REPO)
|
app.py
CHANGED
|
@@ -260,19 +260,25 @@ NUTRITION_DATABASE = {
|
|
| 260 |
def select_device() -> str:
|
| 261 |
"""
|
| 262 |
Automatski odabir najboljeg dostupnog device-a.
|
|
|
|
| 263 |
|
| 264 |
Returns:
|
| 265 |
str: 'cuda', 'mps', ili 'cpu'
|
| 266 |
"""
|
|
|
|
| 267 |
if torch.cuda.is_available():
|
| 268 |
device = "cuda"
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
| 270 |
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
| 271 |
device = "mps"
|
| 272 |
logger.info("✅ MPS available - Using Apple Silicon GPU")
|
|
|
|
| 273 |
else:
|
| 274 |
device = "cpu"
|
| 275 |
-
logger.info("⚠️ Using CPU - inference will be slower")
|
| 276 |
|
| 277 |
return device
|
| 278 |
|
|
@@ -405,19 +411,31 @@ class FoodRecognizer:
|
|
| 405 |
|
| 406 |
Model se automatski preuzima sa Hugging Face Hub.
|
| 407 |
"""
|
|
|
|
|
|
|
|
|
|
| 408 |
try:
|
| 409 |
# Model ID - pretrained na Food-101
|
| 410 |
model_name = "Kaludi/food-category-classification-v2.0"
|
| 411 |
|
| 412 |
logger.info(f"📥 Downloading model: {model_name}")
|
| 413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
# Učitaj feature extractor
|
| 415 |
-
self.feature_extractor = AutoFeatureExtractor.from_pretrained(
|
|
|
|
|
|
|
|
|
|
| 416 |
|
| 417 |
# Učitaj model
|
| 418 |
self.model = AutoModelForImageClassification.from_pretrained(
|
| 419 |
model_name,
|
| 420 |
-
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
|
|
|
| 421 |
)
|
| 422 |
|
| 423 |
# Prebaci na device i postavi u eval mode
|
|
@@ -433,8 +451,18 @@ class FoodRecognizer:
|
|
| 433 |
logger.info("🔄 Trying fallback model...")
|
| 434 |
model_name = "nateraw/food"
|
| 435 |
|
| 436 |
-
|
| 437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
self.model = self.model.to(self.device)
|
| 439 |
self.model.eval()
|
| 440 |
|
|
@@ -621,6 +649,11 @@ Confidence: **{primary['confidence']:.1%}**
|
|
| 621 |
logger.error(f"❌ Prediction error: {e}")
|
| 622 |
return None, f"❌ **Error:** {str(e)}\n\nPlease try another image."
|
| 623 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 624 |
# Kreiraj Gradio interfejs
|
| 625 |
with gr.Blocks(
|
| 626 |
title="AI Food Scanner",
|
|
@@ -733,9 +766,10 @@ def main():
|
|
| 733 |
# Launch sa konfiguracijom za Hugging Face Spaces
|
| 734 |
demo.launch(
|
| 735 |
server_name="0.0.0.0",
|
| 736 |
-
server_port=7860,
|
| 737 |
share=False,
|
| 738 |
-
show_error=True
|
|
|
|
| 739 |
)
|
| 740 |
|
| 741 |
|
|
|
|
| 260 |
def select_device() -> str:
|
| 261 |
"""
|
| 262 |
Automatski odabir najboljeg dostupnog device-a.
|
| 263 |
+
Optimizovano za Hugging Face Spaces (CPU ili T4 GPU).
|
| 264 |
|
| 265 |
Returns:
|
| 266 |
str: 'cuda', 'mps', ili 'cpu'
|
| 267 |
"""
|
| 268 |
+
# Check for CUDA GPU (HF Spaces T4 GPU)
|
| 269 |
if torch.cuda.is_available():
|
| 270 |
device = "cuda"
|
| 271 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 272 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
| 273 |
+
logger.info(f"✅ CUDA available - Using GPU: {gpu_name} ({gpu_memory:.1f} GB)")
|
| 274 |
+
# Check for Apple Silicon MPS (local development)
|
| 275 |
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
| 276 |
device = "mps"
|
| 277 |
logger.info("✅ MPS available - Using Apple Silicon GPU")
|
| 278 |
+
# Fallback to CPU (HF Spaces free tier default)
|
| 279 |
else:
|
| 280 |
device = "cpu"
|
| 281 |
+
logger.info("⚠️ Using CPU - inference will be slower (~2-3s per image)")
|
| 282 |
|
| 283 |
return device
|
| 284 |
|
|
|
|
| 411 |
|
| 412 |
Model se automatski preuzima sa Hugging Face Hub.
|
| 413 |
"""
|
| 414 |
+
# Setup cache directory za HF Spaces
|
| 415 |
+
cache_dir = os.environ.get("TRANSFORMERS_CACHE", None)
|
| 416 |
+
|
| 417 |
try:
|
| 418 |
# Model ID - pretrained na Food-101
|
| 419 |
model_name = "Kaludi/food-category-classification-v2.0"
|
| 420 |
|
| 421 |
logger.info(f"📥 Downloading model: {model_name}")
|
| 422 |
|
| 423 |
+
# Load kwargs sa cache directory
|
| 424 |
+
load_kwargs = {}
|
| 425 |
+
if cache_dir:
|
| 426 |
+
load_kwargs["cache_dir"] = cache_dir
|
| 427 |
+
|
| 428 |
# Učitaj feature extractor
|
| 429 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained(
|
| 430 |
+
model_name,
|
| 431 |
+
**load_kwargs
|
| 432 |
+
)
|
| 433 |
|
| 434 |
# Učitaj model
|
| 435 |
self.model = AutoModelForImageClassification.from_pretrained(
|
| 436 |
model_name,
|
| 437 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
| 438 |
+
**load_kwargs
|
| 439 |
)
|
| 440 |
|
| 441 |
# Prebaci na device i postavi u eval mode
|
|
|
|
| 451 |
logger.info("🔄 Trying fallback model...")
|
| 452 |
model_name = "nateraw/food"
|
| 453 |
|
| 454 |
+
load_kwargs = {}
|
| 455 |
+
if cache_dir:
|
| 456 |
+
load_kwargs["cache_dir"] = cache_dir
|
| 457 |
+
|
| 458 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained(
|
| 459 |
+
model_name,
|
| 460 |
+
**load_kwargs
|
| 461 |
+
)
|
| 462 |
+
self.model = AutoModelForImageClassification.from_pretrained(
|
| 463 |
+
model_name,
|
| 464 |
+
**load_kwargs
|
| 465 |
+
)
|
| 466 |
self.model = self.model.to(self.device)
|
| 467 |
self.model.eval()
|
| 468 |
|
|
|
|
| 649 |
logger.error(f"❌ Prediction error: {e}")
|
| 650 |
return None, f"❌ **Error:** {str(e)}\n\nPlease try another image."
|
| 651 |
|
| 652 |
+
# Health check funkcija za monitoring (API endpoint)
|
| 653 |
+
def health_check():
|
| 654 |
+
"""Simple health check that returns OK status."""
|
| 655 |
+
return {"status": "healthy", "model_loaded": True}
|
| 656 |
+
|
| 657 |
# Kreiraj Gradio interfejs
|
| 658 |
with gr.Blocks(
|
| 659 |
title="AI Food Scanner",
|
|
|
|
| 766 |
# Launch sa konfiguracijom za Hugging Face Spaces
|
| 767 |
demo.launch(
|
| 768 |
server_name="0.0.0.0",
|
| 769 |
+
server_port=int(os.environ.get("PORT", 7860)),
|
| 770 |
share=False,
|
| 771 |
+
show_error=True,
|
| 772 |
+
auth=None # No authentication required
|
| 773 |
)
|
| 774 |
|
| 775 |
|