Spaces:
Sleeping
Sleeping
File size: 15,215 Bytes
90d44fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
#!/usr/bin/env python3
"""
π§ͺ Comprehensive Testing Framework for Ultra-Advanced Food Recognition
====================================================================
Testing suite for evaluating the state-of-the-art ensemble model
performance, accuracy, and robustness.
Evaluates:
- Model accuracy across different food categories
- Ensemble agreement and confidence calibration
- Image quality robustness
- Hallucination detection effectiveness
- Speed and memory usage
- Cross-cultural food recognition
Author: AI Assistant
Version: 1.0.0 - Comprehensive Testing Suite
"""
import os
import time
import json
import asyncio
import statistics
from typing import Dict, List, Any, Tuple
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import requests
from io import BytesIO
# Import our model
from app import UltraAdvancedFoodRecognizer, FOOD_CATEGORIES, select_device
class FoodRecognitionTester:
"""Comprehensive testing framework for food recognition model."""
def __init__(self):
self.device = select_device()
print(f"π§ͺ Initializing test framework on {self.device.upper()}")
self.recognizer = UltraAdvancedFoodRecognizer(self.device)
self.test_results = {}
def create_synthetic_test_images(self) -> List[Tuple[Image.Image, str, str]]:
"""Create synthetic test images for basic functionality testing."""
test_images = []
# Create simple colored rectangles representing different foods
test_cases = [
("apple", (220, 20, 60), "fruits"), # Red apple
("banana", (255, 255, 0), "fruits"), # Yellow banana
("broccoli", (34, 139, 34), "vegetables"), # Green broccoli
("carrot", (255, 140, 0), "vegetables"), # Orange carrot
("bread", (222, 184, 135), "grains_carbs"), # Brown bread
("pizza", (255, 69, 0), "prepared_dishes"), # Reddish pizza
]
for food_name, color, category in test_cases:
# Create a 224x224 image with the specified color
img = Image.new('RGB', (224, 224), color)
# Add some texture (simple noise)
draw = ImageDraw.Draw(img)
for i in range(50):
x = np.random.randint(0, 224)
y = np.random.randint(0, 224)
noise_color = tuple(max(0, min(255, c + np.random.randint(-30, 30))) for c in color)
draw.point((x, y), fill=noise_color)
test_images.append((img, food_name, category))
return test_images
def test_basic_functionality(self) -> Dict[str, Any]:
"""Test basic model functionality."""
print("π Testing basic functionality...")
test_images = self.create_synthetic_test_images()
results = {
"total_tests": len(test_images),
"passed": 0,
"failed": 0,
"details": []
}
for img, expected_food, expected_category in test_images:
try:
start_time = time.time()
# Test food detection
is_food, food_confidence, _ = self.recognizer.detect_food_advanced(img)
# Test food analysis
analysis = self.recognizer.analyze_food(img)
processing_time = time.time() - start_time
test_result = {
"expected_food": expected_food,
"expected_category": expected_category,
"detected_food": analysis["primary_label"],
"confidence": analysis["confidence"],
"is_food_detected": is_food,
"food_detection_confidence": food_confidence,
"processing_time_ms": round(processing_time * 1000, 2),
"status": "passed" if is_food and analysis["confidence"] > 0.1 else "failed"
}
if test_result["status"] == "passed":
results["passed"] += 1
else:
results["failed"] += 1
results["details"].append(test_result)
except Exception as e:
results["failed"] += 1
results["details"].append({
"expected_food": expected_food,
"error": str(e),
"status": "error"
})
return results
def test_ensemble_agreement(self) -> Dict[str, Any]:
"""Test ensemble model agreement and consistency."""
print("π€ Testing ensemble agreement...")
test_images = self.create_synthetic_test_images()
agreement_scores = []
confidence_consistency = []
for img, food_name, _ in test_images:
try:
analysis = self.recognizer.analyze_food(img)
ensemble_details = analysis.get("ensemble_details", [])
if len(ensemble_details) > 1:
# Calculate label agreement
labels = [pred["label"] for pred in ensemble_details]
label_counts = {}
for label in labels:
label_counts[label] = label_counts.get(label, 0) + 1
max_agreement = max(label_counts.values())
agreement_ratio = max_agreement / len(labels)
agreement_scores.append(agreement_ratio)
# Calculate confidence consistency
confidences = [pred["confidence"] for pred in ensemble_details]
conf_std = np.std(confidences)
confidence_consistency.append(1.0 - min(conf_std, 1.0))
except Exception as e:
print(f"Error testing {food_name}: {e}")
return {
"average_agreement": statistics.mean(agreement_scores) if agreement_scores else 0,
"agreement_std": statistics.stdev(agreement_scores) if len(agreement_scores) > 1 else 0,
"confidence_consistency": statistics.mean(confidence_consistency) if confidence_consistency else 0,
"tests_run": len(agreement_scores)
}
def test_image_quality_robustness(self) -> Dict[str, Any]:
"""Test model performance on various image qualities."""
print("πΈ Testing image quality robustness...")
# Create base test image
base_img = Image.new('RGB', (224, 224), (220, 20, 60)) # Red apple
quality_tests = []
# Test different qualities
for brightness in [0.5, 0.8, 1.0, 1.2, 1.5]:
from PIL import ImageEnhance
enhancer = ImageEnhance.Brightness(base_img)
bright_img = enhancer.enhance(brightness)
try:
analysis = self.recognizer.analyze_food(bright_img)
quality_tests.append({
"test_type": "brightness",
"factor": brightness,
"confidence": analysis["confidence"],
"quality_score": analysis["visual_features"].get("estimated_quality", 0),
"hallucination_risk": analysis.get("confidence_analysis", {}).get("hallucination_risk", "unknown")
})
except Exception as e:
quality_tests.append({
"test_type": "brightness",
"factor": brightness,
"error": str(e)
})
# Test blur simulation (reduced sharpness)
for sharpness in [0.3, 0.5, 0.8, 1.0, 1.5]:
from PIL import ImageEnhance
enhancer = ImageEnhance.Sharpness(base_img)
sharp_img = enhancer.enhance(sharpness)
try:
analysis = self.recognizer.analyze_food(sharp_img)
quality_tests.append({
"test_type": "sharpness",
"factor": sharpness,
"confidence": analysis["confidence"],
"quality_score": analysis["visual_features"].get("estimated_quality", 0),
"hallucination_risk": analysis.get("confidence_analysis", {}).get("hallucination_risk", "unknown")
})
except Exception as e:
quality_tests.append({
"test_type": "sharpness",
"factor": sharpness,
"error": str(e)
})
return {
"total_quality_tests": len(quality_tests),
"quality_test_details": quality_tests,
"robustness_score": sum(1 for test in quality_tests if test.get("confidence", 0) > 0.3) / len(quality_tests)
}
def test_performance_benchmarks(self) -> Dict[str, Any]:
"""Test model performance and speed."""
print("β‘ Testing performance benchmarks...")
test_images = self.create_synthetic_test_images()
processing_times = []
memory_usage = []
import psutil
import os
process = psutil.Process(os.getpid())
for img, _, _ in test_images:
# Measure memory before
mem_before = process.memory_info().rss / 1024 / 1024 # MB
# Time the inference
start_time = time.time()
try:
analysis = self.recognizer.analyze_food(img)
processing_time = time.time() - start_time
processing_times.append(processing_time * 1000) # Convert to ms
# Measure memory after
mem_after = process.memory_info().rss / 1024 / 1024 # MB
memory_usage.append(mem_after - mem_before)
except Exception as e:
print(f"Performance test error: {e}")
return {
"average_processing_time_ms": statistics.mean(processing_times) if processing_times else 0,
"min_processing_time_ms": min(processing_times) if processing_times else 0,
"max_processing_time_ms": max(processing_times) if processing_times else 0,
"processing_time_std": statistics.stdev(processing_times) if len(processing_times) > 1 else 0,
"average_memory_delta_mb": statistics.mean(memory_usage) if memory_usage else 0,
"total_tests": len(processing_times)
}
def test_category_coverage(self) -> Dict[str, Any]:
"""Test coverage across food categories."""
print("π Testing category coverage...")
category_stats = {}
for category in FOOD_CATEGORIES:
# Create simple test for each category
img = Image.new('RGB', (224, 224), (100, 150, 200)) # Generic blue
try:
analysis = self.recognizer.analyze_food(img, custom_categories=[category])
category_stats[category] = {
"confidence": analysis["confidence"],
"detected": analysis["primary_label"],
"status": "tested"
}
except Exception as e:
category_stats[category] = {
"error": str(e),
"status": "error"
}
successful_tests = sum(1 for stat in category_stats.values() if stat["status"] == "tested")
return {
"total_categories": len(FOOD_CATEGORIES),
"successfully_tested": successful_tests,
"coverage_percentage": (successful_tests / len(FOOD_CATEGORIES)) * 100,
"category_details": category_stats
}
def run_comprehensive_test_suite(self) -> Dict[str, Any]:
"""Run the complete test suite."""
print("π Starting comprehensive test suite...")
print("=" * 60)
start_time = time.time()
# Run all tests
test_results = {
"test_timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"device": self.device,
"model_config": {
"clip_model": self.recognizer.config.clip_model,
"total_categories": len(FOOD_CATEGORIES),
"models_loaded": self.recognizer.models_loaded
}
}
# 1. Basic functionality
test_results["basic_functionality"] = self.test_basic_functionality()
# 2. Ensemble agreement
test_results["ensemble_agreement"] = self.test_ensemble_agreement()
# 3. Image quality robustness
test_results["quality_robustness"] = self.test_image_quality_robustness()
# 4. Performance benchmarks
test_results["performance"] = self.test_performance_benchmarks()
# 5. Category coverage
test_results["category_coverage"] = self.test_category_coverage()
total_time = time.time() - start_time
test_results["total_test_time_seconds"] = round(total_time, 2)
# Calculate overall score
basic_score = test_results["basic_functionality"]["passed"] / max(test_results["basic_functionality"]["total_tests"], 1)
ensemble_score = test_results["ensemble_agreement"]["average_agreement"]
quality_score = test_results["quality_robustness"]["robustness_score"]
coverage_score = test_results["category_coverage"]["coverage_percentage"] / 100
overall_score = (basic_score + ensemble_score + quality_score + coverage_score) / 4
test_results["overall_score"] = round(overall_score * 100, 2)
print("=" * 60)
print(f"β
Test suite completed in {total_time:.2f} seconds")
print(f"π Overall Score: {test_results['overall_score']}%")
print("=" * 60)
return test_results
def main():
"""Run the testing framework."""
tester = FoodRecognitionTester()
results = tester.run_comprehensive_test_suite()
# Save results
with open("test_results.json", "w") as f:
json.dump(results, f, indent=2)
print(f"π Test results saved to test_results.json")
# Print summary
print("\nπ TEST SUMMARY:")
print(f"Overall Score: {results['overall_score']}%")
print(f"Basic Tests: {results['basic_functionality']['passed']}/{results['basic_functionality']['total_tests']} passed")
print(f"Ensemble Agreement: {results['ensemble_agreement']['average_agreement']:.2%}")
print(f"Quality Robustness: {results['quality_robustness']['robustness_score']:.2%}")
print(f"Category Coverage: {results['category_coverage']['coverage_percentage']:.1f}%")
print(f"Avg Processing Time: {results['performance']['average_processing_time_ms']:.1f}ms")
if __name__ == "__main__":
main() |