Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import re | |
| from typing import Optional, Tuple, Union, Dict, List, Any | |
| from einops import rearrange, repeat | |
| import torch | |
| import torch.nn as nn | |
| from diffusers.loaders import UNet2DConditionLoadersMixin | |
| from diffusers.models import ModelMixin | |
| from diffusers.models.unet_2d_condition import UNet2DConditionOutput | |
| from diffusers.models.unet_2d_blocks import UNetMidBlock2DCrossAttn, UNetMidBlock2DSimpleCrossAttn | |
| from diffusers.models.embeddings import ( | |
| GaussianFourierProjection, | |
| ImageHintTimeEmbedding, | |
| ImageProjection, | |
| ImageTimeEmbedding, | |
| PositionNet, | |
| TextImageProjection, | |
| TextImageTimeEmbedding, | |
| TextTimeEmbedding, | |
| TimestepEmbedding, | |
| Timesteps, | |
| ) | |
| from diffusers.models.attention_processor import ( | |
| ADDED_KV_ATTENTION_PROCESSORS, | |
| CROSS_ATTENTION_PROCESSORS, | |
| AttentionProcessor, | |
| AttnAddedKVProcessor, | |
| AttnProcessor, | |
| ) | |
| from diffusers.models.activations import get_activation | |
| from diffusers.configuration_utils import register_to_config, ConfigMixin | |
| from diffusers.models.modeling_utils import load_state_dict, load_model_dict_into_meta | |
| from diffusers.utils import ( | |
| CONFIG_NAME, | |
| DIFFUSERS_CACHE, | |
| FLAX_WEIGHTS_NAME, | |
| HF_HUB_OFFLINE, | |
| SAFETENSORS_WEIGHTS_NAME, | |
| WEIGHTS_NAME, | |
| _add_variant, | |
| _get_model_file, | |
| deprecate, | |
| is_accelerate_available, | |
| is_torch_version, | |
| logging, | |
| ) | |
| from diffusers import __version__ | |
| if is_torch_version(">=", "1.9.0"): | |
| _LOW_CPU_MEM_USAGE_DEFAULT = True | |
| else: | |
| _LOW_CPU_MEM_USAGE_DEFAULT = False | |
| if is_accelerate_available(): | |
| import accelerate | |
| from accelerate.utils import set_module_tensor_to_device | |
| from accelerate.utils.versions import is_torch_version | |
| from .videoldm_unet_blocks import get_down_block, get_up_block, VideoLDMUNetMidBlock2DCrossAttn | |
| logger = logging.get_logger(__name__) | |
| class VideoLDMUNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| in_channels: int = 4, | |
| out_channels: int = 4, | |
| center_input_sample: bool = False, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlock2D", # -> VideoLDMDownBlock | |
| "CrossAttnDownBlock2D", # -> VideoLDMDownBlock | |
| "CrossAttnDownBlock2D", # -> VideoLDMDownBlock | |
| "DownBlock2D", | |
| ), | |
| mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", | |
| up_block_types: Tuple[str] = ( | |
| "UpBlock2D", | |
| "CrossAttnUpBlock2D", # -> VideoLDMUpBlock | |
| "CrossAttnUpBlock2D", # -> VideoLDMUpBlock | |
| "CrossAttnUpBlock2D", # -> VideoLDMUpBlock | |
| ), | |
| only_cross_attention: Union[bool, Tuple[bool]] = False, | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| layers_per_block: Union[int, Tuple[int]] = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| dropout: float = 0.0, | |
| act_fn: str = "silu", | |
| norm_num_groups: Optional[int] = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: Union[int, Tuple[int]] = 1280, | |
| transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
| encoder_hid_dim: Optional[int] = None, | |
| encoder_hid_dim_type: Optional[str] = None, | |
| attention_head_dim: Union[int, Tuple[int]] = 8, | |
| num_attention_heads: Optional[Union[int, Tuple[int]]] = None, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| class_embed_type: Optional[str] = None, | |
| addition_embed_type: Optional[str] = None, | |
| addition_time_embed_dim: Optional[int] = None, | |
| num_class_embeds: Optional[int] = None, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_skip_time_act: bool = False, | |
| resnet_out_scale_factor: int = 1.0, | |
| time_embedding_type: str = "positional", | |
| time_embedding_dim: Optional[int] = None, | |
| time_embedding_act_fn: Optional[str] = None, | |
| timestep_post_act: Optional[str] = None, | |
| time_cond_proj_dim: Optional[int] = None, | |
| conv_in_kernel: int = 3, | |
| conv_out_kernel: int = 3, | |
| projection_class_embeddings_input_dim: Optional[int] = None, | |
| attention_type: str = "default", | |
| class_embeddings_concat: bool = False, | |
| mid_block_only_cross_attention: Optional[bool] = None, | |
| cross_attention_norm: Optional[str] = None, | |
| addition_embed_type_num_heads=64, | |
| # additional | |
| use_temporal: bool = True, | |
| n_frames: int = 8, | |
| n_temp_heads: int = 8, | |
| first_frame_condition_mode: str = "none", | |
| augment_temporal_attention: bool = False, | |
| temp_pos_embedding: str = "sinusoidal", | |
| use_frame_stride_condition: bool = False, | |
| ): | |
| super().__init__() | |
| rotary_emb = False | |
| if temp_pos_embedding == "rotary": | |
| # from rotary_embedding_torch import RotaryEmbedding | |
| # rotary_emb = RotaryEmbedding(32) | |
| # self.rotary_emb = rotary_emb | |
| rotary_emb = True | |
| self.rotary_emb = rotary_emb | |
| self.use_temporal = use_temporal | |
| self.augment_temporal_attention = augment_temporal_attention | |
| assert first_frame_condition_mode in ["none", "concat", "conv2d", "input_only"], f"first_frame_condition_mode: {first_frame_condition_mode} must be one of ['none', 'concat', 'conv2d', 'input_only']" | |
| self.first_frame_condition_mode = first_frame_condition_mode | |
| latent_channels = in_channels | |
| self.sample_size = sample_size | |
| if num_attention_heads is not None: | |
| raise ValueError( | |
| "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." | |
| ) | |
| num_attention_heads = num_attention_heads or attention_head_dim | |
| # Check inputs | |
| if len(down_block_types) != len(up_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
| ) | |
| if len(block_out_channels) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." | |
| ) | |
| if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
| ) | |
| # input | |
| conv_in_padding = (conv_in_kernel - 1) // 2 | |
| self.conv_in = nn.Conv2d( | |
| in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
| ) | |
| # time | |
| if time_embedding_type == "fourier": | |
| time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 | |
| if time_embed_dim % 2 != 0: | |
| raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") | |
| self.time_proj = GaussianFourierProjection( | |
| time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos | |
| ) | |
| timestep_input_dim = time_embed_dim | |
| elif time_embedding_type == "positional": | |
| time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 | |
| self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
| timestep_input_dim = block_out_channels[0] | |
| else: | |
| raise ValueError( | |
| f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." | |
| ) | |
| self.time_embedding = TimestepEmbedding( | |
| timestep_input_dim, | |
| time_embed_dim, | |
| act_fn=act_fn, | |
| post_act_fn=timestep_post_act, | |
| cond_proj_dim=time_cond_proj_dim, | |
| ) | |
| self.use_frame_stride_condition = use_frame_stride_condition | |
| if self.use_frame_stride_condition: | |
| self.frame_stride_embedding = TimestepEmbedding( | |
| timestep_input_dim, | |
| time_embed_dim, | |
| act_fn=act_fn, | |
| post_act_fn=timestep_post_act, | |
| cond_proj_dim=time_cond_proj_dim, | |
| ) | |
| # zero init | |
| nn.init.zeros_(self.frame_stride_embedding.linear_2.weight) | |
| nn.init.zeros_(self.frame_stride_embedding.linear_2.bias) | |
| if encoder_hid_dim_type is None and encoder_hid_dim is not None: | |
| encoder_hid_dim_type = "text_proj" | |
| self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) | |
| logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") | |
| if encoder_hid_dim is None and encoder_hid_dim_type is not None: | |
| raise ValueError( | |
| f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." | |
| ) | |
| if encoder_hid_dim_type == "text_proj": | |
| self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) | |
| elif encoder_hid_dim_type == "text_image_proj": | |
| # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much | |
| # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use | |
| # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` | |
| self.encoder_hid_proj = TextImageProjection( | |
| text_embed_dim=encoder_hid_dim, | |
| image_embed_dim=cross_attention_dim, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| elif encoder_hid_dim_type == "image_proj": | |
| # Kandinsky 2.2 | |
| self.encoder_hid_proj = ImageProjection( | |
| image_embed_dim=encoder_hid_dim, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| elif encoder_hid_dim_type is not None: | |
| raise ValueError( | |
| f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." | |
| ) | |
| else: | |
| self.encoder_hid_proj = None | |
| # class embedding | |
| if class_embed_type is None and num_class_embeds is not None: | |
| self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
| elif class_embed_type == "timestep": | |
| self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) | |
| elif class_embed_type == "identity": | |
| self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
| elif class_embed_type == "projection": | |
| if projection_class_embeddings_input_dim is None: | |
| raise ValueError( | |
| "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" | |
| ) | |
| # The projection `class_embed_type` is the same as the timestep `class_embed_type` except | |
| # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings | |
| # 2. it projects from an arbitrary input dimension. | |
| # | |
| # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. | |
| # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. | |
| # As a result, `TimestepEmbedding` can be passed arbitrary vectors. | |
| self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
| elif class_embed_type == "simple_projection": | |
| if projection_class_embeddings_input_dim is None: | |
| raise ValueError( | |
| "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" | |
| ) | |
| self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) | |
| else: | |
| self.class_embedding = None | |
| if addition_embed_type == "text": | |
| if encoder_hid_dim is not None: | |
| text_time_embedding_from_dim = encoder_hid_dim | |
| else: | |
| text_time_embedding_from_dim = cross_attention_dim | |
| self.add_embedding = TextTimeEmbedding( | |
| text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads | |
| ) | |
| elif addition_embed_type == "text_image": | |
| # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much | |
| # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use | |
| # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` | |
| self.add_embedding = TextImageTimeEmbedding( | |
| text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim | |
| ) | |
| elif addition_embed_type == "text_time": | |
| self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) | |
| self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
| elif addition_embed_type == "image": | |
| # Kandinsky 2.2 | |
| self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) | |
| elif addition_embed_type == "image_hint": | |
| # Kandinsky 2.2 ControlNet | |
| self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) | |
| elif addition_embed_type is not None: | |
| raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") | |
| if time_embedding_act_fn is None: | |
| self.time_embed_act = None | |
| else: | |
| self.time_embed_act = get_activation(time_embedding_act_fn) | |
| self.down_blocks = nn.ModuleList([]) | |
| self.up_blocks = nn.ModuleList([]) | |
| if isinstance(only_cross_attention, bool): | |
| if mid_block_only_cross_attention is None: | |
| mid_block_only_cross_attention = only_cross_attention | |
| only_cross_attention = [only_cross_attention] * len(down_block_types) | |
| if mid_block_only_cross_attention is None: | |
| mid_block_only_cross_attention = False | |
| if isinstance(num_attention_heads, int): | |
| num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
| if isinstance(cross_attention_dim, int): | |
| cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
| if isinstance(layers_per_block, int): | |
| layers_per_block = [layers_per_block] * len(down_block_types) | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
| if class_embeddings_concat: | |
| # The time embeddings are concatenated with the class embeddings. The dimension of the | |
| # time embeddings passed to the down, middle, and up blocks is twice the dimension of the | |
| # regular time embeddings | |
| blocks_time_embed_dim = time_embed_dim * 2 | |
| else: | |
| blocks_time_embed_dim = time_embed_dim | |
| # down | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block[i], | |
| transformer_layers_per_block=transformer_layers_per_block[i], | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=blocks_time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim[i], | |
| num_attention_heads=num_attention_heads[i], | |
| downsample_padding=downsample_padding, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| attention_type=attention_type, | |
| resnet_skip_time_act=resnet_skip_time_act, | |
| resnet_out_scale_factor=resnet_out_scale_factor, | |
| cross_attention_norm=cross_attention_norm, | |
| attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
| dropout=dropout, | |
| # additional | |
| use_temporal=use_temporal, | |
| augment_temporal_attention=augment_temporal_attention, | |
| n_frames=n_frames, | |
| n_temp_heads=n_temp_heads, | |
| first_frame_condition_mode=first_frame_condition_mode, | |
| latent_channels=latent_channels, | |
| rotary_emb=rotary_emb, | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| if mid_block_type == "UNetMidBlock2DCrossAttn": | |
| self.mid_block = VideoLDMUNetMidBlock2DCrossAttn( | |
| transformer_layers_per_block=transformer_layers_per_block[-1], | |
| in_channels=block_out_channels[-1], | |
| temb_channels=blocks_time_embed_dim, | |
| dropout=dropout, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| cross_attention_dim=cross_attention_dim[-1], | |
| num_attention_heads=num_attention_heads[-1], | |
| resnet_groups=norm_num_groups, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| attention_type=attention_type, | |
| # additional | |
| use_temporal=use_temporal, | |
| n_frames=n_frames, | |
| first_frame_condition_mode=first_frame_condition_mode, | |
| latent_channels=latent_channels, | |
| ) | |
| elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": | |
| self.mid_block = UNetMidBlock2DSimpleCrossAttn( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=blocks_time_embed_dim, | |
| dropout=dropout, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| cross_attention_dim=cross_attention_dim[-1], | |
| attention_head_dim=attention_head_dim[-1], | |
| resnet_groups=norm_num_groups, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| skip_time_act=resnet_skip_time_act, | |
| only_cross_attention=mid_block_only_cross_attention, | |
| cross_attention_norm=cross_attention_norm, | |
| ) | |
| elif mid_block_type is None: | |
| self.mid_block = None | |
| else: | |
| raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
| # count how many layers upsample the images | |
| self.num_upsamplers = 0 | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
| reversed_layers_per_block = list(reversed(layers_per_block)) | |
| reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | |
| reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) | |
| only_cross_attention = list(reversed(only_cross_attention)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| is_final_block = i == len(block_out_channels) - 1 | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
| # add upsample block for all BUT final layer | |
| if not is_final_block: | |
| add_upsample = True | |
| self.num_upsamplers += 1 | |
| else: | |
| add_upsample = False | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=reversed_layers_per_block[i] + 1, | |
| transformer_layers_per_block=reversed_transformer_layers_per_block[i], | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=blocks_time_embed_dim, | |
| add_upsample=add_upsample, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=reversed_cross_attention_dim[i], | |
| num_attention_heads=reversed_num_attention_heads[i], | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| attention_type=attention_type, | |
| resnet_skip_time_act=resnet_skip_time_act, | |
| resnet_out_scale_factor=resnet_out_scale_factor, | |
| cross_attention_norm=cross_attention_norm, | |
| attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
| dropout=dropout, | |
| # additional | |
| use_temporal=use_temporal, | |
| augment_temporal_attention=augment_temporal_attention, | |
| n_frames=n_frames, | |
| n_temp_heads=n_temp_heads, | |
| first_frame_condition_mode=first_frame_condition_mode, | |
| latent_channels=latent_channels, | |
| rotary_emb=rotary_emb, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| if norm_num_groups is not None: | |
| self.conv_norm_out = nn.GroupNorm( | |
| num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | |
| ) | |
| self.conv_act = get_activation(act_fn) | |
| else: | |
| self.conv_norm_out = None | |
| self.conv_act = None | |
| conv_out_padding = (conv_out_kernel - 1) // 2 | |
| self.conv_out = nn.Conv2d( | |
| block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding | |
| ) | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnAddedKVProcessor() | |
| elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnProcessor() | |
| else: | |
| raise ValueError( | |
| f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
| ) | |
| self.set_attn_processor(processor) | |
| def set_attention_slice(self, slice_size): | |
| r""" | |
| Enable sliced attention computation. | |
| When this option is enabled, the attention module splits the input tensor in slices to compute attention in | |
| several steps. This is useful for saving some memory in exchange for a small decrease in speed. | |
| Args: | |
| slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
| When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If | |
| `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is | |
| provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
| must be a multiple of `slice_size`. | |
| """ | |
| sliceable_head_dims = [] | |
| def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
| if hasattr(module, "set_attention_slice"): | |
| sliceable_head_dims.append(module.sliceable_head_dim) | |
| for child in module.children(): | |
| fn_recursive_retrieve_sliceable_dims(child) | |
| # retrieve number of attention layers | |
| for module in self.children(): | |
| fn_recursive_retrieve_sliceable_dims(module) | |
| num_sliceable_layers = len(sliceable_head_dims) | |
| if slice_size == "auto": | |
| # half the attention head size is usually a good trade-off between | |
| # speed and memory | |
| slice_size = [dim // 2 for dim in sliceable_head_dims] | |
| elif slice_size == "max": | |
| # make smallest slice possible | |
| slice_size = num_sliceable_layers * [1] | |
| slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
| if len(slice_size) != len(sliceable_head_dims): | |
| raise ValueError( | |
| f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
| f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
| ) | |
| for i in range(len(slice_size)): | |
| size = slice_size[i] | |
| dim = sliceable_head_dims[i] | |
| if size is not None and size > dim: | |
| raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_attention_slice method | |
| # gets the message | |
| def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
| if hasattr(module, "set_attention_slice"): | |
| module.set_attention_slice(slice_size.pop()) | |
| for child in module.children(): | |
| fn_recursive_set_attention_slice(child, slice_size) | |
| reversed_slice_size = list(reversed(slice_size)) | |
| for module in self.children(): | |
| fn_recursive_set_attention_slice(module, reversed_slice_size) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| class_labels: Optional[torch.Tensor] = None, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
| down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
| mid_block_additional_residual: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| # additional | |
| first_frame_latents: Optional[torch.Tensor] = None, | |
| frame_stride: Optional[Union[torch.Tensor, float, int]] = None, | |
| ) -> Union[UNet2DConditionOutput, Tuple]: | |
| # reshape video data | |
| assert sample.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={sample.dim()}." | |
| video_length = sample.shape[2] | |
| if first_frame_latents is not None: | |
| assert self.config.first_frame_condition_mode != "none", "first_frame_latents is not None, but first_frame_condition_mode is 'none'." | |
| if self.config.first_frame_condition_mode != "none": | |
| sample = torch.cat([first_frame_latents, sample], dim=2) | |
| video_length += 1 | |
| # copy conditioning embeddings for cross attention | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) | |
| sample = rearrange(sample, "b c f h w -> (b f) c h w") | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| default_overall_up_factor = 2**self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # ensure attention_mask is a bias, and give it a singleton query_tokens dimension | |
| # expects mask of shape: | |
| # [batch, key_tokens] | |
| # adds singleton query_tokens dimension: | |
| # [batch, 1, key_tokens] | |
| # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
| # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
| # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
| if attention_mask is not None: | |
| # assume that mask is expressed as: | |
| # (1 = keep, 0 = discard) | |
| # convert mask into a bias that can be added to attention scores: | |
| # (keep = +0, discard = -10000.0) | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # convert encoder_attention_mask to a bias the same way we do for attention_mask | |
| if encoder_attention_mask is not None: | |
| encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
| encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
| # 0. center input if necessary | |
| if self.config.center_input_sample: | |
| sample = 2 * sample - 1.0 | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # `Timesteps` does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=sample.dtype) | |
| emb = self.time_embedding(t_emb, timestep_cond) | |
| if self.use_frame_stride_condition: | |
| if not torch.is_tensor(frame_stride): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| frame_stride = torch.tensor([frame_stride], dtype=dtype, device=sample.device) | |
| elif len(frame_stride.shape) == 0: | |
| frame_stride = frame_stride[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| frame_stride = frame_stride.expand(sample.shape[0]) | |
| fs_emb = self.time_proj(frame_stride) | |
| # `Timesteps` does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| fs_emb = fs_emb.to(dtype=sample.dtype) | |
| fs_emb = self.frame_stride_embedding(fs_emb, timestep_cond) | |
| emb = emb + fs_emb | |
| aug_emb = None | |
| if self.class_embedding is not None: | |
| if class_labels is None: | |
| raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
| if self.config.class_embed_type == "timestep": | |
| class_labels = self.time_proj(class_labels) | |
| # `Timesteps` does not contain any weights and will always return f32 tensors | |
| # there might be better ways to encapsulate this. | |
| class_labels = class_labels.to(dtype=sample.dtype) | |
| class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) | |
| if self.config.class_embeddings_concat: | |
| emb = torch.cat([emb, class_emb], dim=-1) | |
| else: | |
| emb = emb + class_emb | |
| if self.config.addition_embed_type == "text": | |
| aug_emb = self.add_embedding(encoder_hidden_states) | |
| elif self.config.addition_embed_type == "text_image": | |
| # Kandinsky 2.1 - style | |
| if "image_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
| ) | |
| image_embs = added_cond_kwargs.get("image_embeds") | |
| text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) | |
| aug_emb = self.add_embedding(text_embs, image_embs) | |
| elif self.config.addition_embed_type == "text_time": | |
| # SDXL - style | |
| if "text_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
| ) | |
| text_embeds = added_cond_kwargs.get("text_embeds") | |
| if "time_ids" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
| ) | |
| time_ids = added_cond_kwargs.get("time_ids") | |
| time_embeds = self.add_time_proj(time_ids.flatten()) | |
| time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
| add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
| add_embeds = add_embeds.to(emb.dtype) | |
| aug_emb = self.add_embedding(add_embeds) | |
| elif self.config.addition_embed_type == "image": | |
| # Kandinsky 2.2 - style | |
| if "image_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
| ) | |
| image_embs = added_cond_kwargs.get("image_embeds") | |
| aug_emb = self.add_embedding(image_embs) | |
| elif self.config.addition_embed_type == "image_hint": | |
| # Kandinsky 2.2 - style | |
| if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" | |
| ) | |
| image_embs = added_cond_kwargs.get("image_embeds") | |
| hint = added_cond_kwargs.get("hint") | |
| aug_emb, hint = self.add_embedding(image_embs, hint) | |
| sample = torch.cat([sample, hint], dim=1) | |
| emb = emb + aug_emb if aug_emb is not None else emb | |
| if self.time_embed_act is not None: | |
| emb = self.time_embed_act(emb) | |
| if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": | |
| encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
| elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": | |
| # Kadinsky 2.1 - style | |
| if "image_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
| ) | |
| image_embeds = added_cond_kwargs.get("image_embeds") | |
| encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) | |
| elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": | |
| # Kandinsky 2.2 - style | |
| if "image_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
| ) | |
| image_embeds = added_cond_kwargs.get("image_embeds") | |
| encoder_hidden_states = self.encoder_hid_proj(image_embeds) | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| # 2.5 GLIGEN position net | |
| if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: | |
| cross_attention_kwargs = cross_attention_kwargs.copy() | |
| gligen_args = cross_attention_kwargs.pop("gligen") | |
| cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} | |
| # 3. down | |
| lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
| is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None | |
| is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| # For t2i-adapter CrossAttnDownBlock2D | |
| additional_residuals = {} | |
| if is_adapter and len(down_block_additional_residuals) > 0: | |
| additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0) | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| encoder_attention_mask=encoder_attention_mask, | |
| first_frame_latents=first_frame_latents, | |
| **additional_residuals, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale, first_frame_latents=first_frame_latents,) | |
| if is_adapter and len(down_block_additional_residuals) > 0: | |
| sample += down_block_additional_residuals.pop(0) | |
| down_block_res_samples += res_samples | |
| if is_controlnet: | |
| new_down_block_res_samples = () | |
| for down_block_res_sample, down_block_additional_residual in zip( | |
| down_block_res_samples, down_block_additional_residuals | |
| ): | |
| down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
| new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
| down_block_res_samples = new_down_block_res_samples | |
| # 4. mid | |
| if self.mid_block is not None: | |
| sample = self.mid_block( | |
| sample, | |
| emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| encoder_attention_mask=encoder_attention_mask, | |
| # additional | |
| first_frame_latents=first_frame_latents, | |
| ) | |
| # To support T2I-Adapter-XL | |
| if ( | |
| is_adapter | |
| and len(down_block_additional_residuals) > 0 | |
| and sample.shape == down_block_additional_residuals[0].shape | |
| ): | |
| sample += down_block_additional_residuals.pop(0) | |
| if is_controlnet: | |
| sample = sample + mid_block_additional_residual | |
| # 5. up | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| is_final_block = i == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
| # if we have not reached the final block and need to forward the | |
| # upsample size, we do it here | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| upsample_size=upsample_size, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| first_frame_latents=first_frame_latents, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| upsample_size=upsample_size, | |
| scale=lora_scale, | |
| first_frame_latents=first_frame_latents, | |
| ) | |
| # 6. post-process | |
| if self.conv_norm_out: | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| sample = rearrange(sample, "(b f) c h w -> b c f h w", f=video_length) | |
| if self.config.first_frame_condition_mode != "none": | |
| sample = sample[:, :, 1:, :, :] | |
| if not return_dict: | |
| return (sample,) | |
| return UNet2DConditionOutput(sample=sample) | |
| def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): | |
| kwargs.pop("low_cpu_mem_usage", False) | |
| kwargs.pop("device_map", None) | |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
| ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) | |
| force_download = kwargs.pop("force_download", False) | |
| from_flax = kwargs.pop("from_flax", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| output_loading_info = kwargs.pop("output_loading_info", False) | |
| local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| revision = kwargs.pop("revision", None) | |
| torch_dtype = kwargs.pop("torch_dtype", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| device_map = None | |
| max_memory = kwargs.pop("max_memory", None) | |
| offload_folder = kwargs.pop("offload_folder", None) | |
| offload_state_dict = kwargs.pop("offload_state_dict", False) | |
| low_cpu_mem_usage = False | |
| variant = kwargs.pop("variant", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = True | |
| allow_pickle = True | |
| if low_cpu_mem_usage and not is_accelerate_available(): | |
| low_cpu_mem_usage = False | |
| logger.warning( | |
| "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
| " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
| " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
| " install accelerate\n```\n." | |
| ) | |
| if device_map is not None and not is_accelerate_available(): | |
| raise NotImplementedError( | |
| "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" | |
| " `device_map=None`. You can install accelerate with `pip install accelerate`." | |
| ) | |
| # Check if we can handle device_map and dispatching the weights | |
| if device_map is not None and not is_torch_version(">=", "1.9.0"): | |
| raise NotImplementedError( | |
| "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
| " `device_map=None`." | |
| ) | |
| if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
| raise NotImplementedError( | |
| "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
| " `low_cpu_mem_usage=False`." | |
| ) | |
| if low_cpu_mem_usage is False and device_map is not None: | |
| raise ValueError( | |
| f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" | |
| " dispatching. Please make sure to set `low_cpu_mem_usage=True`." | |
| ) | |
| # Load config if we don't provide a configuration | |
| config_path = pretrained_model_name_or_path | |
| user_agent = { | |
| "diffusers": __version__, | |
| "file_type": "model", | |
| "framework": "pytorch", | |
| } | |
| # load config | |
| config, unused_kwargs, commit_hash = cls.load_config( | |
| config_path, | |
| cache_dir=cache_dir, | |
| return_unused_kwargs=True, | |
| return_commit_hash=True, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| device_map=device_map, | |
| max_memory=max_memory, | |
| offload_folder=offload_folder, | |
| offload_state_dict=offload_state_dict, | |
| user_agent=user_agent, | |
| **kwargs, | |
| ) | |
| # load model | |
| model_file = None | |
| if from_flax: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=FLAX_WEIGHTS_NAME, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| model = cls.from_config(config, **unused_kwargs) | |
| # Convert the weights | |
| from diffusers.models.modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model | |
| model = load_flax_checkpoint_in_pytorch_model(model, model_file) | |
| else: | |
| if use_safetensors: | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| except IOError as e: | |
| if not allow_pickle: | |
| raise e | |
| pass | |
| if model_file is None: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=_add_variant(WEIGHTS_NAME, variant), | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| if low_cpu_mem_usage: | |
| # Instantiate model with empty weights | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config, **unused_kwargs) | |
| # if device_map is None, load the state dict and move the params from meta device to the cpu | |
| if device_map is None: | |
| param_device = "cpu" | |
| state_dict = load_state_dict(model_file, variant=variant) | |
| model._convert_deprecated_attention_blocks(state_dict) | |
| # move the params from meta device to cpu | |
| missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
| if len(missing_keys) > 0: | |
| raise ValueError( | |
| f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" | |
| f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
| " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
| " those weights or else make sure your checkpoint file is correct." | |
| ) | |
| unexpected_keys = load_model_dict_into_meta( | |
| model, | |
| state_dict, | |
| device=param_device, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_name_or_path, | |
| ) | |
| if cls._keys_to_ignore_on_load_unexpected is not None: | |
| for pat in cls._keys_to_ignore_on_load_unexpected: | |
| unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
| if len(unexpected_keys) > 0: | |
| logger.warn( | |
| f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
| ) | |
| else: # else let accelerate handle loading and dispatching. | |
| # Load weights and dispatch according to the device_map | |
| # by default the device_map is None and the weights are loaded on the CPU | |
| try: | |
| accelerate.load_checkpoint_and_dispatch( | |
| model, | |
| model_file, | |
| device_map, | |
| max_memory=max_memory, | |
| offload_folder=offload_folder, | |
| offload_state_dict=offload_state_dict, | |
| dtype=torch_dtype, | |
| ) | |
| except AttributeError as e: | |
| # When using accelerate loading, we do not have the ability to load the state | |
| # dict and rename the weight names manually. Additionally, accelerate skips | |
| # torch loading conventions and directly writes into `module.{_buffers, _parameters}` | |
| # (which look like they should be private variables?), so we can't use the standard hooks | |
| # to rename parameters on load. We need to mimic the original weight names so the correct | |
| # attributes are available. After we have loaded the weights, we convert the deprecated | |
| # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert | |
| # the weights so we don't have to do this again. | |
| if "'Attention' object has no attribute" in str(e): | |
| logger.warn( | |
| f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}" | |
| " was saved with deprecated attention block weight names. We will load it with the deprecated attention block" | |
| " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion," | |
| " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint," | |
| " please also re-upload it or open a PR on the original repository." | |
| ) | |
| model._temp_convert_self_to_deprecated_attention_blocks() | |
| accelerate.load_checkpoint_and_dispatch( | |
| model, | |
| model_file, | |
| device_map, | |
| max_memory=max_memory, | |
| offload_folder=offload_folder, | |
| offload_state_dict=offload_state_dict, | |
| dtype=torch_dtype, | |
| ) | |
| model._undo_temp_convert_self_to_deprecated_attention_blocks() | |
| else: | |
| raise e | |
| loading_info = { | |
| "missing_keys": [], | |
| "unexpected_keys": [], | |
| "mismatched_keys": [], | |
| "error_msgs": [], | |
| } | |
| else: | |
| model = cls.from_config(config, **unused_kwargs) | |
| state_dict = load_state_dict(model_file, variant=variant) | |
| model._convert_deprecated_attention_blocks(state_dict) | |
| model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model( | |
| model, | |
| state_dict, | |
| model_file, | |
| pretrained_model_name_or_path, | |
| ignore_mismatched_sizes=ignore_mismatched_sizes, | |
| ) | |
| loading_info = { | |
| "missing_keys": missing_keys, | |
| "unexpected_keys": unexpected_keys, | |
| "mismatched_keys": mismatched_keys, | |
| "error_msgs": error_msgs, | |
| } | |
| if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): | |
| raise ValueError( | |
| f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." | |
| ) | |
| elif torch_dtype is not None: | |
| model = model.to(torch_dtype) | |
| model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
| m, u = loading_info["missing_keys"], loading_info["unexpected_keys"] | |
| logger.info(f"### missing keys: {len(m)}; unexpected keys: {len(u)};") | |
| # print(f"### missing keys:\n{m}\n### unexpected keys:\n{u}\n") | |
| spatial_params = [p.numel() if "conv3ds" not in n and "tempo_attns" not in n else 0 for n, p in model.named_parameters()] | |
| tconv_params = [p.numel() if "conv3ds." in n else 0 for n, p in model.named_parameters()] | |
| tattn_params = [p.numel() if "tempo_attns." in n else 0 for n, p in model.named_parameters()] | |
| tffconv_params = [p.numel() if "first_frame_conv." in n else 0 for n, p in model.named_parameters()] | |
| logger.info(f"### First Frame Convolution Layer Parameters: {sum(tffconv_params) / 1e6} M") | |
| logger.info(f"### Spatial UNet Parameters: {sum(spatial_params) / 1e6} M") | |
| logger.info(f"### Temporal Convolution Module Parameters: {sum(tconv_params) / 1e6} M") | |
| logger.info(f"### Temporal Attention Module Parameters: {sum(tattn_params) / 1e6} M") | |
| # Set model in evaluation mode to deactivate DropOut modules by default | |
| model.eval() | |
| if output_loading_info: | |
| return model, loading_info | |
| return model | |
| if __name__ == "__main__": | |
| # test | |
| from diffusers import AutoencoderKL, DDIMScheduler | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from consisti2v.pipelines.pipeline_animation import AnimationPipeline | |
| from consisti2v.pipelines.pipeline_conditional_animation import ConditionalAnimationPipeline | |
| from consisti2v.utils.util import save_videos_grid | |
| pretrained_model_path = "models/StableDiffusion/stable-diffusion-v1-5" | |
| prompt = "apply eye makeup" | |
| first_frame_path = "/ML-A100/home/weiming/datasets/UCF/frames/v_ApplyEyeMakeup_g01_c01_frame_90.jpg" | |
| tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer", use_safetensors=True) | |
| text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") | |
| vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae", use_safetensors=True) | |
| unet = VideoLDMUNet3DConditionModel.from_pretrained( | |
| pretrained_model_path, | |
| subfolder="unet", | |
| use_safetensors=True | |
| ) | |
| noise_scheduler_kwargs = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.00085, | |
| "beta_end": 0.012, | |
| "beta_schedule": "linear", | |
| "steps_offset": 1, | |
| "clip_sample": False, | |
| } | |
| noise_scheduler = DDIMScheduler(**noise_scheduler_kwargs) | |
| # latent = torch.randn(1, 4, 8, 64, 64).to("cuda") | |
| # text_embedding = torch.randn(1, 77, 768).to("cuda") | |
| # timestep = torch.randint(0, 1000, (1,)).to("cuda").squeeze(0) | |
| # output = unet(latent, timestep, text_embedding) | |
| pipeline = ConditionalAnimationPipeline( | |
| unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler, | |
| ).to("cuda") | |
| sample = pipeline( | |
| prompt, | |
| num_inference_steps = 25, | |
| guidance_scale = 8., | |
| video_length = 8, | |
| height = 256, | |
| width = 256, | |
| first_frame_paths = first_frame_path, | |
| ).videos | |
| print(sample.shape) | |
| save_videos_grid(sample, f"samples/videoldm.gif") |