Spaces:
Sleeping
Sleeping
File size: 12,758 Bytes
e4b3d6c 6379dbe e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 e4b3d6c 4d08675 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
"""
ORYNXML REST API Backend - FastAPI with 211 AI Models
Provides REST API endpoints for HTML frontend at orynxml-ai.pages.dev
"""
from fastapi import FastAPI, HTTPException, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from typing import Optional, List, Dict, Any
import os
import sqlite3
import hashlib
from datetime import datetime, timedelta
from huggingface_hub import InferenceClient
import uvicorn
# HuggingFace Inference Client
HF_TOKEN = os.getenv("HF_TOKEN", "")
inference_client = InferenceClient(token=HF_TOKEN if HF_TOKEN else None)
# Cloudflare Configuration
CLOUDFLARE_CONFIG = {
"api_token": os.getenv("CLOUDFLARE_API_TOKEN", ""),
"account_id": os.getenv(
"CLOUDFLARE_ACCOUNT_ID", "62af59a7ac82b29543577ee6800735ee"
),
"d1_database_id": os.getenv(
"CLOUDFLARE_D1_DATABASE_ID", "6d887f74-98ac-4db7-bfed-8061903d1f6c"
),
"r2_bucket_name": os.getenv("CLOUDFLARE_R2_BUCKET_NAME", "openmanus-storage"),
"kv_namespace_id": os.getenv(
"CLOUDFLARE_KV_NAMESPACE_ID", "87f4aa01410d4fb19821f61006f94441"
),
"kv_namespace_cache": os.getenv(
"CLOUDFLARE_KV_CACHE_ID", "7b58c88292c847d1a82c8e0dd5129f37"
),
"durable_objects_sessions": "AGENT_SESSIONS",
"durable_objects_chatrooms": "CHAT_ROOMS",
}
# AI Models Dictionary (211 models)
AI_MODELS = {
"Text Generation": {
"Qwen Models": [
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"Qwen/Qwen2.5-Math-72B-Instruct",
# ... (add all 35 Qwen models)
],
"DeepSeek Models": [
"deepseek-ai/deepseek-llm-67b-chat",
"deepseek-ai/DeepSeek-V2-Chat",
# ... (add all 17 DeepSeek models)
],
},
"Image Generation": [
"black-forest-labs/FLUX.1-dev",
"black-forest-labs/FLUX.1-schnell",
"stabilityai/stable-diffusion-xl-base-1.0",
# ... (add all image gen models)
],
"Image Editing": [
"timbrooks/instruct-pix2pix",
"lllyasviel/control_v11p_sd15_canny",
# ... (add all editing models)
],
"Video Generation": {
"Text-to-Video": [
"ali-vilab/text-to-video-ms-1.7b",
# ...
],
"Image-to-Video": [
"stabilityai/stable-video-diffusion-img2vid",
# ...
],
},
"Audio": {
"TTS": ["suno/bark", "microsoft/speecht5_tts"],
"STT": ["openai/whisper-large-v3"],
},
"Translation": {
"Arabic-English": [
"Helsinki-NLP/opus-mt-ar-en",
"Helsinki-NLP/opus-mt-en-ar",
]
},
}
# Initialize FastAPI
app = FastAPI(
title="ORYNXML AI Platform API",
description="REST API for 211 AI models with authentication and Cloudflare integration",
version="1.0.0",
)
# CORS Configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, restrict to your domain
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Database initialization
def init_database():
"""Initialize SQLite database for user authentication"""
conn = sqlite3.connect("openmanus.db")
cursor = conn.cursor()
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
mobile TEXT UNIQUE NOT NULL,
name TEXT NOT NULL,
password_hash TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
"""
)
conn.commit()
conn.close()
init_database()
# Pydantic Models
class SignupRequest(BaseModel):
mobile: str
name: str
password: str
class LoginRequest(BaseModel):
mobile: str
password: str
class AIRequest(BaseModel):
model: str
prompt: str
max_tokens: Optional[int] = 2000
temperature: Optional[float] = 0.7
class ChatRequest(BaseModel):
message: str
model: Optional[str] = "Qwen/Qwen2.5-72B-Instruct"
history: Optional[List[Dict[str, str]]] = []
# Helper Functions
def hash_password(password: str) -> str:
"""Hash password using SHA-256"""
return hashlib.sha256(password.encode()).hexdigest()
def verify_password(password: str, password_hash: str) -> bool:
"""Verify password against hash"""
return hash_password(password) == password_hash
# API Endpoints
@app.get("/")
async def root():
"""Root endpoint"""
return {
"message": "ORYNXML AI Platform API",
"version": "1.0.0",
"status": "running",
"models": 211,
"endpoints": {
"health": "/health",
"auth": "/auth/signup, /auth/login",
"ai": "/ai/chat, /ai/generate",
"models": "/models/list",
},
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"gpu_available": False, # We're using HF API, not local GPU
"backend": "HuggingFace Inference API",
"models_available": 211,
"cloudflare_configured": bool(CLOUDFLARE_CONFIG["api_token"]),
}
@app.post("/auth/signup")
async def signup(request: SignupRequest):
"""User registration endpoint"""
try:
if len(request.password) < 6:
raise HTTPException(
status_code=400, detail="Password must be at least 6 characters"
)
conn = sqlite3.connect("openmanus.db")
cursor = conn.cursor()
# Check if user exists
cursor.execute("SELECT mobile FROM users WHERE mobile = ?", (request.mobile,))
if cursor.fetchone():
conn.close()
raise HTTPException(
status_code=400, detail="Mobile number already registered"
)
# Insert new user
password_hash = hash_password(request.password)
cursor.execute(
"INSERT INTO users (mobile, name, password_hash) VALUES (?, ?, ?)",
(request.mobile, request.name, password_hash),
)
conn.commit()
conn.close()
return {
"success": True,
"message": "Account created successfully",
"mobile": request.mobile,
"name": request.name,
}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Registration failed: {str(e)}")
@app.post("/auth/login")
async def login(request: LoginRequest):
"""User login endpoint"""
try:
conn = sqlite3.connect("openmanus.db")
cursor = conn.cursor()
cursor.execute(
"SELECT name, password_hash FROM users WHERE mobile = ?", (request.mobile,)
)
result = cursor.fetchone()
conn.close()
if not result:
raise HTTPException(
status_code=401, detail="Invalid mobile number or password"
)
name, password_hash = result
if not verify_password(request.password, password_hash):
raise HTTPException(
status_code=401, detail="Invalid mobile number or password"
)
return {
"success": True,
"message": "Login successful",
"user": {"mobile": request.mobile, "name": name},
"token": f"session_{hash_password(request.mobile + str(datetime.now()))[:32]}",
}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Login failed: {str(e)}")
@app.post("/ai/chat")
async def ai_chat(request: ChatRequest):
"""AI chat endpoint - main endpoint for AI interactions"""
try:
# Prepare messages for chat completion
messages = []
# Add history
for msg in request.history:
messages.append(
{"role": msg.get("role", "user"), "content": msg.get("content", "")}
)
# Add current message
messages.append({"role": "user", "content": request.message})
# Call HuggingFace Inference API
response_text = ""
for message in inference_client.chat_completion(
model=request.model,
messages=messages,
max_tokens=2000,
temperature=0.7,
stream=True,
):
if hasattr(message, "choices") and len(message.choices) > 0:
delta = message.choices[0].delta
if hasattr(delta, "content") and delta.content:
response_text += delta.content
return {
"success": True,
"response": response_text,
"model": request.model,
"timestamp": datetime.now().isoformat(),
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"AI generation failed: {str(e)}")
@app.post("/ai/generate")
async def ai_generate(request: AIRequest):
"""Generic AI generation endpoint"""
try:
# Determine task type based on model
model_lower = request.model.lower()
if "flux" in model_lower or "stable-diffusion" in model_lower:
# Image generation
return {
"success": True,
"type": "image",
"message": f"Image generation with {request.model}",
"prompt": request.prompt,
"note": "Image will be generated using HuggingFace Inference API",
}
elif "video" in model_lower:
# Video generation
return {
"success": True,
"type": "video",
"message": f"Video generation with {request.model}",
"prompt": request.prompt,
"note": "Video will be generated using HuggingFace Inference API",
}
else:
# Text generation (default)
messages = [{"role": "user", "content": request.prompt}]
response_text = ""
for message in inference_client.chat_completion(
model=request.model,
messages=messages,
max_tokens=request.max_tokens,
temperature=request.temperature,
stream=True,
):
if hasattr(message, "choices") and len(message.choices) > 0:
delta = message.choices[0].delta
if hasattr(delta, "content") and delta.content:
response_text += delta.content
return {
"success": True,
"type": "text",
"response": response_text,
"model": request.model,
"timestamp": datetime.now().isoformat(),
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
@app.get("/models/list")
async def list_models():
"""List all available AI models"""
return {
"total": 211,
"categories": AI_MODELS,
"note": "All models are accessed via HuggingFace Inference API",
}
@app.get("/cloudflare/status")
async def cloudflare_status():
"""Cloudflare services status"""
services = []
if CLOUDFLARE_CONFIG["api_token"]:
services.append("β
API Token Configured")
if CLOUDFLARE_CONFIG["d1_database_id"]:
services.append("β
D1 Database Connected")
if CLOUDFLARE_CONFIG["r2_bucket_name"]:
services.append("β
R2 Storage Connected")
if CLOUDFLARE_CONFIG["kv_namespace_id"]:
services.append("β
KV Sessions Connected")
if CLOUDFLARE_CONFIG["kv_namespace_cache"]:
services.append("β
KV Cache Connected")
if CLOUDFLARE_CONFIG["durable_objects_sessions"]:
services.append("β
Durable Objects (Agent Sessions)")
if CLOUDFLARE_CONFIG["durable_objects_chatrooms"]:
services.append("β
Durable Objects (Chat Rooms)")
return {
"configured": len(services) > 0,
"services": services,
"account_id": CLOUDFLARE_CONFIG["account_id"],
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|