Spaces:
Sleeping
Sleeping
zhimin-z
commited on
Commit
·
f5d00b4
1
Parent(s):
c3011cc
refine
Browse files
msr.py
CHANGED
|
@@ -25,31 +25,35 @@ load_dotenv()
|
|
| 25 |
|
| 26 |
AGENTS_REPO = "SWE-Arena/bot_metadata"
|
| 27 |
REVIEW_METADATA_REPO = "SWE-Arena/review_metadata"
|
| 28 |
-
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata"
|
| 29 |
-
LEADERBOARD_TIME_FRAME_DAYS = 180
|
| 30 |
-
GHARCHIVE_DATA_DIR = "../gharchive/data"
|
| 31 |
-
DUCKDB_CACHE_FILE = "cache.duckdb"
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
DUCKDB_THREADS = 8
|
| 35 |
-
DUCKDB_MEMORY_LIMIT = "64GB"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Download configuration
|
| 38 |
-
DOWNLOAD_WORKERS = 4
|
| 39 |
-
DOWNLOAD_RETRY_DELAY = 2
|
| 40 |
-
MAX_RETRIES = 5
|
| 41 |
|
| 42 |
# Upload configuration
|
| 43 |
-
UPLOAD_DELAY_SECONDS = 5
|
| 44 |
-
UPLOAD_INITIAL_BACKOFF = 60
|
| 45 |
-
UPLOAD_MAX_BACKOFF = 3600
|
| 46 |
|
| 47 |
# Scheduler configuration
|
| 48 |
-
SCHEDULE_ENABLED =
|
| 49 |
-
SCHEDULE_DAY_OF_MONTH = 22
|
| 50 |
-
SCHEDULE_HOUR = 0
|
| 51 |
-
SCHEDULE_MINUTE = 0
|
| 52 |
-
SCHEDULE_TIMEZONE = 'UTC'
|
| 53 |
|
| 54 |
# =============================================================================
|
| 55 |
# UTILITY FUNCTIONS
|
|
@@ -80,34 +84,24 @@ def save_jsonl(filename, data):
|
|
| 80 |
|
| 81 |
|
| 82 |
def normalize_date_format(date_string):
|
| 83 |
-
"""
|
| 84 |
-
Convert date strings to standardized ISO 8601 format with Z suffix.
|
| 85 |
-
Handles both 'T' and space-separated datetime formats (including newlines).
|
| 86 |
-
Examples:
|
| 87 |
-
- 2025-10-15T23:23:47.983068 -> 2025-10-15T23:23:47Z
|
| 88 |
-
- 2025-06-17 21:21:07+00 -> 2025-06-17T21:21:07Z
|
| 89 |
-
"""
|
| 90 |
if not date_string or date_string == 'N/A':
|
| 91 |
return 'N/A'
|
| 92 |
|
| 93 |
try:
|
| 94 |
import re
|
| 95 |
-
# Remove all whitespace (spaces, newlines, tabs) and replace with single space
|
| 96 |
-
date_string = re.sub(r'\s+', ' ', date_string.strip())
|
| 97 |
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
| 99 |
date_string = date_string.replace(' ', 'T')
|
| 100 |
|
| 101 |
-
# Fix incomplete timezone offset (+00 or -00 -> +00:00 or -00:00)
|
| 102 |
-
# Check if timezone offset exists and is incomplete
|
| 103 |
if len(date_string) >= 3:
|
| 104 |
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
|
| 105 |
date_string = date_string + ':00'
|
| 106 |
|
| 107 |
-
# Parse the date string (handles both with and without microseconds)
|
| 108 |
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
|
| 109 |
-
|
| 110 |
-
# Convert to standardized format
|
| 111 |
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 112 |
except Exception as e:
|
| 113 |
print(f"Warning: Could not parse date '{date_string}': {e}")
|
|
@@ -127,23 +121,13 @@ def get_hf_token():
|
|
| 127 |
# =============================================================================
|
| 128 |
|
| 129 |
def download_file(url):
|
| 130 |
-
"""
|
| 131 |
-
Download a GHArchive file with retry logic.
|
| 132 |
-
|
| 133 |
-
Args:
|
| 134 |
-
url: URL to download
|
| 135 |
-
|
| 136 |
-
Returns:
|
| 137 |
-
bool: True if successful, False otherwise
|
| 138 |
-
"""
|
| 139 |
filename = url.split("/")[-1]
|
| 140 |
filepath = os.path.join(GHARCHIVE_DATA_DIR, filename)
|
| 141 |
|
| 142 |
-
# Skip if json.gz already exists
|
| 143 |
if os.path.exists(filepath):
|
| 144 |
return True
|
| 145 |
|
| 146 |
-
# Download with retry logic
|
| 147 |
for attempt in range(MAX_RETRIES):
|
| 148 |
try:
|
| 149 |
response = requests.get(url, timeout=30)
|
|
@@ -154,12 +138,10 @@ def download_file(url):
|
|
| 154 |
|
| 155 |
except requests.exceptions.HTTPError as e:
|
| 156 |
if e.response.status_code == 404:
|
| 157 |
-
# File doesn't exist, don't retry
|
| 158 |
return False
|
| 159 |
else:
|
| 160 |
-
# Other HTTP errors, retry
|
| 161 |
if attempt < MAX_RETRIES - 1:
|
| 162 |
-
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
|
| 163 |
print(f" ⚠ {filename}: HTTP error {e.response.status_code}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
| 164 |
time.sleep(wait_time)
|
| 165 |
else:
|
|
@@ -168,16 +150,14 @@ def download_file(url):
|
|
| 168 |
except (requests.exceptions.Timeout,
|
| 169 |
requests.exceptions.ConnectionError,
|
| 170 |
requests.exceptions.ReadTimeout) as e:
|
| 171 |
-
# Timeout/connection errors, retry
|
| 172 |
if attempt < MAX_RETRIES - 1:
|
| 173 |
-
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
|
| 174 |
print(f" ⚠ {filename}: {type(e).__name__}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
| 175 |
time.sleep(wait_time)
|
| 176 |
else:
|
| 177 |
print(f" ✗ {filename}: Failed after {MAX_RETRIES} attempts - {type(e).__name__}")
|
| 178 |
|
| 179 |
except Exception as e:
|
| 180 |
-
# Other errors, retry
|
| 181 |
if attempt < MAX_RETRIES - 1:
|
| 182 |
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
|
| 183 |
print(f" ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
|
@@ -189,17 +169,9 @@ def download_file(url):
|
|
| 189 |
|
| 190 |
|
| 191 |
def download_all_gharchive_data():
|
| 192 |
-
"""
|
| 193 |
-
Download all GHArchive data files for the last LEADERBOARD_TIME_FRAME_DAYS.
|
| 194 |
-
Uses parallel downloads with ThreadPoolExecutor.
|
| 195 |
-
|
| 196 |
-
Returns:
|
| 197 |
-
bool: True if all downloads completed (some may have failed), False if critical error
|
| 198 |
-
"""
|
| 199 |
-
# Create data directory if it doesn't exist
|
| 200 |
os.makedirs(GHARCHIVE_DATA_DIR, exist_ok=True)
|
| 201 |
|
| 202 |
-
# Generate URLs for last N days (hourly files: 0-23 for each day)
|
| 203 |
end_date = datetime.now()
|
| 204 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 205 |
|
|
@@ -207,7 +179,6 @@ def download_all_gharchive_data():
|
|
| 207 |
current_date = start_date
|
| 208 |
while current_date <= end_date:
|
| 209 |
date_str = current_date.strftime("%Y-%m-%d")
|
| 210 |
-
# Generate hourly URLs for this day (0-23)
|
| 211 |
for hour in range(24):
|
| 212 |
url = f"https://data.gharchive.org/{date_str}-{hour}.json.gz"
|
| 213 |
urls.append(url)
|
|
@@ -217,10 +188,7 @@ def download_all_gharchive_data():
|
|
| 217 |
|
| 218 |
try:
|
| 219 |
with ThreadPoolExecutor(max_workers=DOWNLOAD_WORKERS) as executor:
|
| 220 |
-
# Submit all downloads
|
| 221 |
futures = [executor.submit(download_file, url) for url in urls]
|
| 222 |
-
|
| 223 |
-
# Wait for downloads to complete
|
| 224 |
for future in as_completed(futures):
|
| 225 |
downloads_processed += 1
|
| 226 |
|
|
@@ -235,25 +203,20 @@ def download_all_gharchive_data():
|
|
| 235 |
|
| 236 |
|
| 237 |
# =============================================================================
|
| 238 |
-
# HUGGINGFACE API WRAPPERS
|
| 239 |
# =============================================================================
|
| 240 |
|
| 241 |
def is_retryable_error(e):
|
| 242 |
-
"""
|
| 243 |
-
Check if exception is retryable (rate limit or timeout error).
|
| 244 |
-
"""
|
| 245 |
-
# Check for rate limit error (429)
|
| 246 |
if isinstance(e, HfHubHTTPError):
|
| 247 |
if e.response.status_code == 429:
|
| 248 |
return True
|
| 249 |
|
| 250 |
-
# Check for timeout errors
|
| 251 |
if isinstance(e, (requests.exceptions.Timeout,
|
| 252 |
requests.exceptions.ReadTimeout,
|
| 253 |
requests.exceptions.ConnectTimeout)):
|
| 254 |
return True
|
| 255 |
|
| 256 |
-
# Check if it's a timeout error wrapped in HfHubHTTPError
|
| 257 |
if isinstance(e, Exception):
|
| 258 |
error_str = str(e).lower()
|
| 259 |
if 'timeout' in error_str or 'timed out' in error_str:
|
|
@@ -274,7 +237,7 @@ def is_retryable_error(e):
|
|
| 274 |
)
|
| 275 |
)
|
| 276 |
def list_repo_files_with_backoff(api, **kwargs):
|
| 277 |
-
"""Wrapper for api.list_repo_files() with exponential backoff
|
| 278 |
return api.list_repo_files(**kwargs)
|
| 279 |
|
| 280 |
|
|
@@ -290,7 +253,7 @@ def list_repo_files_with_backoff(api, **kwargs):
|
|
| 290 |
)
|
| 291 |
)
|
| 292 |
def hf_hub_download_with_backoff(**kwargs):
|
| 293 |
-
"""Wrapper for hf_hub_download() with exponential backoff
|
| 294 |
return hf_hub_download(**kwargs)
|
| 295 |
|
| 296 |
|
|
@@ -306,7 +269,7 @@ def hf_hub_download_with_backoff(**kwargs):
|
|
| 306 |
)
|
| 307 |
)
|
| 308 |
def upload_file_with_backoff(api, **kwargs):
|
| 309 |
-
"""Wrapper for api.upload_file() with exponential backoff
|
| 310 |
return api.upload_file(**kwargs)
|
| 311 |
|
| 312 |
|
|
@@ -322,44 +285,30 @@ def upload_file_with_backoff(api, **kwargs):
|
|
| 322 |
)
|
| 323 |
)
|
| 324 |
def upload_folder_with_backoff(api, **kwargs):
|
| 325 |
-
"""Wrapper for api.upload_folder() with exponential backoff
|
| 326 |
return api.upload_folder(**kwargs)
|
| 327 |
|
| 328 |
|
| 329 |
def get_duckdb_connection():
|
| 330 |
"""
|
| 331 |
-
Initialize DuckDB connection with
|
| 332 |
-
|
| 333 |
-
Returns:
|
| 334 |
-
DuckDB connection object
|
| 335 |
"""
|
| 336 |
-
# Use persistent database for caching results
|
| 337 |
conn = duckdb.connect(DUCKDB_CACHE_FILE)
|
| 338 |
|
| 339 |
-
#
|
| 340 |
-
conn.execute(f"SET threads TO {DUCKDB_THREADS};")
|
| 341 |
-
conn.execute("SET preserve_insertion_order = false;")
|
| 342 |
-
conn.execute("SET enable_object_cache = true;")
|
| 343 |
-
conn.execute("SET temp_directory = '/tmp/duckdb_temp';")
|
| 344 |
-
conn.execute(f"SET memory_limit = '{DUCKDB_MEMORY_LIMIT}';")
|
| 345 |
-
conn.execute(f"SET max_memory = '{DUCKDB_MEMORY_LIMIT}';")
|
| 346 |
|
| 347 |
return conn
|
| 348 |
|
| 349 |
|
| 350 |
def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_DIR):
|
| 351 |
-
"""
|
| 352 |
-
Generate file path patterns for GHArchive data in date range.
|
| 353 |
-
Only includes files that actually exist on disk.
|
| 354 |
-
|
| 355 |
-
Args:
|
| 356 |
-
start_date: Start datetime
|
| 357 |
-
end_date: End datetime
|
| 358 |
-
data_dir: Directory containing GHArchive data files
|
| 359 |
-
|
| 360 |
-
Returns:
|
| 361 |
-
List of file path patterns (hourly JSON.gz files) that exist
|
| 362 |
-
"""
|
| 363 |
file_patterns = []
|
| 364 |
missing_dates = set()
|
| 365 |
|
|
@@ -367,40 +316,39 @@ def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_DI
|
|
| 367 |
end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 368 |
|
| 369 |
while current_date <= end_day:
|
| 370 |
-
# Pattern for hourly JSON.gz files: 2024-11-15-{0..23}.json.gz
|
| 371 |
date_has_files = False
|
| 372 |
for hour in range(24):
|
| 373 |
pattern = os.path.join(data_dir, f"{current_date.strftime('%Y-%m-%d')}-{hour}.json.gz")
|
| 374 |
-
# Only add pattern if file exists
|
| 375 |
if os.path.exists(pattern):
|
| 376 |
file_patterns.append(pattern)
|
| 377 |
date_has_files = True
|
| 378 |
|
| 379 |
-
# Track missing dates
|
| 380 |
if not date_has_files:
|
| 381 |
missing_dates.add(current_date.strftime('%Y-%m-%d'))
|
| 382 |
|
| 383 |
-
# Move to next day
|
| 384 |
current_date += timedelta(days=1)
|
| 385 |
|
| 386 |
-
# Print warning about missing dates
|
| 387 |
if missing_dates:
|
| 388 |
-
print(f"
|
| 389 |
|
| 390 |
return file_patterns
|
| 391 |
|
| 392 |
|
| 393 |
# =============================================================================
|
| 394 |
-
#
|
| 395 |
# =============================================================================
|
| 396 |
|
| 397 |
-
def
|
| 398 |
"""
|
| 399 |
-
Fetch
|
| 400 |
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
|
| 405 |
Args:
|
| 406 |
conn: DuckDB connection instance
|
|
@@ -409,218 +357,128 @@ def fetch_all_pr_metadata_single_query(conn, identifiers, start_date, end_date):
|
|
| 409 |
end_date: End datetime (timezone-aware)
|
| 410 |
|
| 411 |
Returns:
|
| 412 |
-
Dictionary mapping agent identifier to list of
|
| 413 |
-
{
|
| 414 |
-
'agent-identifier': [
|
| 415 |
-
{
|
| 416 |
-
'url': PR URL,
|
| 417 |
-
'reviewed_at': Review timestamp,
|
| 418 |
-
'merged_at': Merge timestamp (if merged, else None),
|
| 419 |
-
'closed_at': Close timestamp (if closed, else None)
|
| 420 |
-
},
|
| 421 |
-
...
|
| 422 |
-
],
|
| 423 |
-
...
|
| 424 |
-
}
|
| 425 |
"""
|
| 426 |
-
|
| 427 |
-
|
| 428 |
|
| 429 |
-
#
|
| 430 |
-
|
| 431 |
-
|
| 432 |
|
| 433 |
-
#
|
| 434 |
-
|
|
|
|
|
|
|
| 435 |
|
| 436 |
-
|
| 437 |
-
review_patterns_sql = str(review_patterns).replace("'", "'")
|
| 438 |
-
status_patterns_sql = str(status_patterns).replace("'", "'")
|
| 439 |
-
|
| 440 |
-
# Build comprehensive query with CTEs using direct SQL array format (JSON.gz format)
|
| 441 |
-
# Optimized: Single file scan + ROW_NUMBER() deduplication (no DISTINCT)
|
| 442 |
-
query = f"""
|
| 443 |
-
WITH all_review_events AS (
|
| 444 |
-
-- Single file scan for all three event types (optimization: 3x I/O reduction)
|
| 445 |
-
SELECT
|
| 446 |
-
TRY_CAST(type AS VARCHAR) as event_type,
|
| 447 |
-
TRY_CAST(json_extract_string(actor, '$.login') AS VARCHAR) as reviewer,
|
| 448 |
-
TRY_CAST(json_extract_string(repo, '$.name') AS VARCHAR) as repo_name,
|
| 449 |
-
payload,
|
| 450 |
-
created_at
|
| 451 |
-
FROM read_json({review_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
|
| 452 |
-
WHERE
|
| 453 |
-
TRY_CAST(type AS VARCHAR) IN ('PullRequestReviewEvent', 'IssueCommentEvent', 'PullRequestReviewCommentEvent')
|
| 454 |
-
AND TRY_CAST(json_extract_string(actor, '$.login') AS VARCHAR) IN ({identifier_list})
|
| 455 |
-
),
|
| 456 |
-
|
| 457 |
-
review_events AS (
|
| 458 |
-
-- Process events conditionally based on type
|
| 459 |
-
SELECT
|
| 460 |
-
CASE
|
| 461 |
-
WHEN event_type = 'IssueCommentEvent'
|
| 462 |
-
THEN TRY_CAST(json_extract_string(payload, '$.issue.html_url') AS VARCHAR)
|
| 463 |
-
ELSE TRY_CAST(json_extract_string(payload, '$.pull_request.html_url') AS VARCHAR)
|
| 464 |
-
END as url,
|
| 465 |
-
CASE
|
| 466 |
-
WHEN event_type = 'PullRequestReviewEvent'
|
| 467 |
-
THEN COALESCE(
|
| 468 |
-
TRY_CAST(json_extract_string(payload, '$.review.submitted_at') AS VARCHAR),
|
| 469 |
-
TRY_CAST(created_at AS VARCHAR)
|
| 470 |
-
)
|
| 471 |
-
ELSE TRY_CAST(created_at AS VARCHAR)
|
| 472 |
-
END as reviewed_at,
|
| 473 |
-
reviewer,
|
| 474 |
-
repo_name,
|
| 475 |
-
CASE
|
| 476 |
-
WHEN event_type = 'IssueCommentEvent'
|
| 477 |
-
THEN TRY_CAST(json_extract_string(payload, '$.issue.number') AS INTEGER)
|
| 478 |
-
ELSE TRY_CAST(json_extract_string(payload, '$.pull_request.number') AS INTEGER)
|
| 479 |
-
END as pr_number
|
| 480 |
-
FROM all_review_events
|
| 481 |
-
WHERE
|
| 482 |
-
-- Validate required fields per event type
|
| 483 |
-
(event_type = 'PullRequestReviewEvent' AND json_extract_string(payload, '$.pull_request.html_url') IS NOT NULL)
|
| 484 |
-
OR (event_type = 'IssueCommentEvent' AND json_extract_string(payload, '$.issue.pull_request.url') IS NOT NULL AND json_extract_string(payload, '$.issue.html_url') IS NOT NULL)
|
| 485 |
-
OR (event_type = 'PullRequestReviewCommentEvent' AND json_extract_string(payload, '$.pull_request.html_url') IS NOT NULL)
|
| 486 |
-
),
|
| 487 |
-
|
| 488 |
-
pr_status AS (
|
| 489 |
-
-- Get merge/close status for those PRs
|
| 490 |
-
SELECT
|
| 491 |
-
TRY_CAST(json_extract_string(payload, '$.pull_request.html_url') AS VARCHAR) as url,
|
| 492 |
-
TRY_CAST(json_extract_string(payload, '$.pull_request.merged') AS BOOLEAN) as is_merged,
|
| 493 |
-
TRY_CAST(json_extract_string(payload, '$.pull_request.merged_at') AS VARCHAR) as merged_at,
|
| 494 |
-
TRY_CAST(json_extract_string(payload, '$.pull_request.closed_at') AS VARCHAR) as closed_at,
|
| 495 |
-
created_at,
|
| 496 |
-
ROW_NUMBER() OVER (PARTITION BY json_extract_string(payload, '$.pull_request.html_url') ORDER BY created_at DESC) as rn
|
| 497 |
-
FROM read_json({status_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
|
| 498 |
-
WHERE
|
| 499 |
-
type = 'PullRequestEvent'
|
| 500 |
-
AND TRY_CAST(json_extract_string(payload, '$.action') AS VARCHAR) = 'closed'
|
| 501 |
-
AND json_extract_string(payload, '$.pull_request.html_url') IS NOT NULL
|
| 502 |
-
AND json_extract_string(payload, '$.pull_request.html_url') IN (
|
| 503 |
-
SELECT DISTINCT url FROM review_events
|
| 504 |
-
)
|
| 505 |
-
),
|
| 506 |
-
|
| 507 |
-
deduplicated_reviews AS (
|
| 508 |
-
-- Efficient deduplication using ROW_NUMBER() instead of DISTINCT (optimization: prevents massive hash table)
|
| 509 |
-
SELECT
|
| 510 |
-
re.reviewer,
|
| 511 |
-
re.url,
|
| 512 |
-
re.reviewed_at,
|
| 513 |
-
ps.merged_at,
|
| 514 |
-
ps.closed_at,
|
| 515 |
-
ROW_NUMBER() OVER (
|
| 516 |
-
PARTITION BY re.reviewer, re.url, re.reviewed_at
|
| 517 |
-
ORDER BY re.reviewed_at
|
| 518 |
-
) as row_num
|
| 519 |
-
FROM review_events re
|
| 520 |
-
LEFT JOIN (SELECT * FROM pr_status WHERE rn = 1) ps ON re.url = ps.url
|
| 521 |
-
)
|
| 522 |
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
url,
|
| 527 |
-
reviewed_at,
|
| 528 |
-
merged_at,
|
| 529 |
-
closed_at
|
| 530 |
-
FROM deduplicated_reviews
|
| 531 |
-
WHERE row_num = 1
|
| 532 |
-
ORDER BY reviewer, reviewed_at DESC
|
| 533 |
-
"""
|
| 534 |
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 553 |
results = conn.execute(query).fetchall()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
CREATE TABLE {cache_table_name} AS
|
| 559 |
-
SELECT * FROM (
|
| 560 |
-
SELECT UNNEST($1) as reviewer, UNNEST($2) as url,
|
| 561 |
-
UNNEST($3) as reviewed_at, UNNEST($4) as merged_at,
|
| 562 |
-
UNNEST($5) as closed_at
|
| 563 |
-
)
|
| 564 |
-
""", [
|
| 565 |
-
[r[0] for r in results],
|
| 566 |
-
[r[1] for r in results],
|
| 567 |
-
[r[2] for r in results],
|
| 568 |
-
[r[3] for r in results],
|
| 569 |
-
[r[4] for r in results]
|
| 570 |
-
])
|
| 571 |
-
|
| 572 |
-
# Group results by agent with verification
|
| 573 |
-
metadata_by_agent = defaultdict(list)
|
| 574 |
-
unique_reviews = set()
|
| 575 |
-
duplicate_count = 0
|
| 576 |
-
|
| 577 |
-
for row in results:
|
| 578 |
-
reviewer = row[0]
|
| 579 |
-
url = row[1]
|
| 580 |
-
reviewed_at = normalize_date_format(row[2]) if row[2] else None
|
| 581 |
-
merged_at = normalize_date_format(row[3]) if row[3] else None
|
| 582 |
-
closed_at = normalize_date_format(row[4]) if row[4] else None
|
| 583 |
-
|
| 584 |
-
# Track unique review combinations for verification
|
| 585 |
-
review_key = (reviewer, url, reviewed_at)
|
| 586 |
-
if review_key in unique_reviews:
|
| 587 |
-
duplicate_count += 1
|
| 588 |
-
unique_reviews.add(review_key)
|
| 589 |
-
|
| 590 |
-
metadata_by_agent[reviewer].append({
|
| 591 |
-
'url': url,
|
| 592 |
-
'reviewed_at': reviewed_at,
|
| 593 |
-
'merged_at': merged_at,
|
| 594 |
-
'closed_at': closed_at,
|
| 595 |
-
})
|
| 596 |
-
|
| 597 |
-
# Verification: Ensure we have unique reviews (no duplicates from query)
|
| 598 |
-
total_reviews = len(results)
|
| 599 |
-
if duplicate_count > 0:
|
| 600 |
-
print(f" Warning: Found {duplicate_count} duplicate review entries in query results!")
|
| 601 |
-
print(f" Total: {total_reviews}, Unique: {len(unique_reviews)}")
|
| 602 |
-
else:
|
| 603 |
-
print(f" Verification passed: {len(unique_reviews)} unique reviews retrieved (no duplicates)")
|
| 604 |
|
| 605 |
-
|
| 606 |
-
return dict(metadata_by_agent)
|
| 607 |
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 613 |
|
| 614 |
|
| 615 |
# =============================================================================
|
| 616 |
-
# HUGGINGFACE STORAGE FUNCTIONS
|
| 617 |
# =============================================================================
|
| 618 |
|
| 619 |
def group_metadata_by_date(metadata_list):
|
| 620 |
-
"""
|
| 621 |
-
Group review metadata by date (year.month.day) for daily storage.
|
| 622 |
-
Returns dict: {(year, month, day): [metadata_list]}
|
| 623 |
-
"""
|
| 624 |
grouped = defaultdict(list)
|
| 625 |
|
| 626 |
for review_meta in metadata_list:
|
|
@@ -639,21 +497,7 @@ def group_metadata_by_date(metadata_list):
|
|
| 639 |
|
| 640 |
|
| 641 |
def upload_single_file_with_retry(api, local_path, repo_path, repo_id, repo_type, commit_message, max_retries=MAX_RETRIES):
|
| 642 |
-
"""
|
| 643 |
-
Upload a single file with exponential backoff retry logic.
|
| 644 |
-
|
| 645 |
-
Args:
|
| 646 |
-
api: HfApi instance
|
| 647 |
-
local_path: Local file path
|
| 648 |
-
repo_path: Path in repository
|
| 649 |
-
repo_id: Repository ID
|
| 650 |
-
repo_type: Repository type (e.g., "dataset")
|
| 651 |
-
commit_message: Commit message
|
| 652 |
-
max_retries: Maximum number of retries
|
| 653 |
-
|
| 654 |
-
Returns:
|
| 655 |
-
bool: True if successful, False otherwise
|
| 656 |
-
"""
|
| 657 |
for attempt in range(max_retries):
|
| 658 |
try:
|
| 659 |
upload_file_with_backoff(
|
|
@@ -667,7 +511,6 @@ def upload_single_file_with_retry(api, local_path, repo_path, repo_id, repo_type
|
|
| 667 |
return True
|
| 668 |
except Exception as e:
|
| 669 |
if attempt < max_retries - 1:
|
| 670 |
-
# Calculate exponential backoff
|
| 671 |
wait_time = min(UPLOAD_INITIAL_BACKOFF * (2 ** attempt), UPLOAD_MAX_BACKOFF)
|
| 672 |
print(f" {e} error on attempt {attempt + 1}/{max_retries}. Retrying in {wait_time}s...")
|
| 673 |
time.sleep(wait_time)
|
|
@@ -678,16 +521,7 @@ def upload_single_file_with_retry(api, local_path, repo_path, repo_id, repo_type
|
|
| 678 |
|
| 679 |
|
| 680 |
def batch_upload_review_metadata(all_metadata):
|
| 681 |
-
"""
|
| 682 |
-
Upload review metadata for all agents with time gaps between uploads.
|
| 683 |
-
Each agent's data is uploaded as separate daily files with retry logic.
|
| 684 |
-
|
| 685 |
-
Args:
|
| 686 |
-
all_metadata: Dictionary mapping agent identifier to list of PR metadata
|
| 687 |
-
|
| 688 |
-
Returns:
|
| 689 |
-
tuple: (success_count, error_count)
|
| 690 |
-
"""
|
| 691 |
try:
|
| 692 |
token = get_hf_token()
|
| 693 |
if not token:
|
|
@@ -699,7 +533,6 @@ def batch_upload_review_metadata(all_metadata):
|
|
| 699 |
error_count = 0
|
| 700 |
total_files = 0
|
| 701 |
|
| 702 |
-
# First, calculate total number of files to upload
|
| 703 |
for agent_identifier, metadata_list in all_metadata.items():
|
| 704 |
if metadata_list:
|
| 705 |
grouped = group_metadata_by_date(metadata_list)
|
|
@@ -713,28 +546,21 @@ def batch_upload_review_metadata(all_metadata):
|
|
| 713 |
if not metadata_list:
|
| 714 |
continue
|
| 715 |
|
| 716 |
-
# Group by date
|
| 717 |
grouped = group_metadata_by_date(metadata_list)
|
| 718 |
|
| 719 |
-
# Create temporary files for this agent
|
| 720 |
agent_temp_dir = tempfile.mkdtemp()
|
| 721 |
|
| 722 |
try:
|
| 723 |
-
# Prepare all files locally
|
| 724 |
local_files = []
|
| 725 |
for (review_year, month, day), day_metadata in grouped.items():
|
| 726 |
filename = f"{review_year}.{month:02d}.{day:02d}.jsonl"
|
| 727 |
local_path = os.path.join(agent_temp_dir, filename)
|
| 728 |
repo_path = f"{agent_identifier}/{filename}"
|
| 729 |
|
| 730 |
-
# Sort by reviewed_at for better organization
|
| 731 |
day_metadata.sort(key=lambda x: x.get('reviewed_at', ''), reverse=True)
|
| 732 |
-
|
| 733 |
-
# Save to temp file
|
| 734 |
save_jsonl(local_path, day_metadata)
|
| 735 |
local_files.append((local_path, repo_path, len(day_metadata)))
|
| 736 |
|
| 737 |
-
# Upload each file with delay
|
| 738 |
agent_success = 0
|
| 739 |
agent_error = 0
|
| 740 |
|
|
@@ -756,12 +582,10 @@ def batch_upload_review_metadata(all_metadata):
|
|
| 756 |
agent_error += 1
|
| 757 |
error_count += 1
|
| 758 |
|
| 759 |
-
# Add delay between uploads (except for last file)
|
| 760 |
if file_idx < len(local_files):
|
| 761 |
time.sleep(UPLOAD_DELAY_SECONDS)
|
| 762 |
|
| 763 |
finally:
|
| 764 |
-
# Clean up temp directory
|
| 765 |
if os.path.exists(agent_temp_dir):
|
| 766 |
import shutil
|
| 767 |
shutil.rmtree(agent_temp_dir)
|
|
@@ -781,22 +605,14 @@ def batch_upload_review_metadata(all_metadata):
|
|
| 781 |
|
| 782 |
|
| 783 |
def load_agents_from_hf():
|
| 784 |
-
"""
|
| 785 |
-
Load all agent metadata JSON files from HuggingFace dataset.
|
| 786 |
-
|
| 787 |
-
The github_identifier is extracted from the filename (e.g., 'agent-name[bot].json' -> 'agent-name[bot]')
|
| 788 |
-
"""
|
| 789 |
try:
|
| 790 |
api = HfApi()
|
| 791 |
agents = []
|
| 792 |
|
| 793 |
-
# List all files in the repository
|
| 794 |
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
|
| 795 |
-
|
| 796 |
-
# Filter for JSON files only
|
| 797 |
json_files = [f for f in files if f.endswith('.json')]
|
| 798 |
|
| 799 |
-
# Download and parse each JSON file
|
| 800 |
for json_file in json_files:
|
| 801 |
try:
|
| 802 |
file_path = hf_hub_download_with_backoff(
|
|
@@ -808,11 +624,9 @@ def load_agents_from_hf():
|
|
| 808 |
with open(file_path, 'r') as f:
|
| 809 |
agent_data = json.load(f)
|
| 810 |
|
| 811 |
-
# Only process agents with status == "public"
|
| 812 |
if agent_data.get('status') != 'public':
|
| 813 |
continue
|
| 814 |
|
| 815 |
-
# Extract github_identifier from filename (remove .json extension)
|
| 816 |
github_identifier = json_file.replace('.json', '')
|
| 817 |
agent_data['github_identifier'] = github_identifier
|
| 818 |
|
|
@@ -823,7 +637,6 @@ def load_agents_from_hf():
|
|
| 823 |
continue
|
| 824 |
|
| 825 |
print(f"Download complete: {len(agents)} agents")
|
| 826 |
-
|
| 827 |
return agents
|
| 828 |
|
| 829 |
except Exception as e:
|
|
@@ -831,13 +644,12 @@ def load_agents_from_hf():
|
|
| 831 |
return []
|
| 832 |
|
| 833 |
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
"""
|
| 841 |
merged_at = review_meta.get('merged_at')
|
| 842 |
closed_at = review_meta.get('closed_at')
|
| 843 |
|
|
@@ -850,23 +662,15 @@ def get_pr_status_from_metadata(review_meta):
|
|
| 850 |
|
| 851 |
|
| 852 |
def calculate_review_stats_from_metadata(metadata_list):
|
| 853 |
-
"""
|
| 854 |
-
Calculate statistics from a list of review metadata.
|
| 855 |
-
|
| 856 |
-
Returns:
|
| 857 |
-
Dictionary with review metrics (total_reviews, merged_prs, acceptance_rate, etc.)
|
| 858 |
-
"""
|
| 859 |
total_reviews = len(metadata_list)
|
| 860 |
|
| 861 |
-
# Count merged PRs
|
| 862 |
merged_prs = sum(1 for review_meta in metadata_list
|
| 863 |
-
|
| 864 |
|
| 865 |
-
# Count rejected PRs
|
| 866 |
rejected_prs = sum(1 for review_meta in metadata_list
|
| 867 |
if get_pr_status_from_metadata(review_meta) == 'closed')
|
| 868 |
|
| 869 |
-
# Count pending PRs
|
| 870 |
pending_prs = sum(1 for review_meta in metadata_list
|
| 871 |
if get_pr_status_from_metadata(review_meta) == 'open')
|
| 872 |
|
|
@@ -883,36 +687,14 @@ def calculate_review_stats_from_metadata(metadata_list):
|
|
| 883 |
|
| 884 |
|
| 885 |
def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
|
| 886 |
-
"""
|
| 887 |
-
Calculate monthly metrics for all agents for visualization.
|
| 888 |
-
|
| 889 |
-
Args:
|
| 890 |
-
all_metadata_dict: Dictionary mapping agent identifier to list of PR metadata
|
| 891 |
-
agents: List of agent dictionaries with metadata
|
| 892 |
-
|
| 893 |
-
Returns:
|
| 894 |
-
dict: {
|
| 895 |
-
'agents': list of agent names,
|
| 896 |
-
'months': list of month labels (e.g., '2025-01'),
|
| 897 |
-
'data': {
|
| 898 |
-
agent_name: {
|
| 899 |
-
'acceptance_rates': list of acceptance rates by month,
|
| 900 |
-
'total_reviews': list of review counts by month,
|
| 901 |
-
'merged_prs': list of merged PR counts by month,
|
| 902 |
-
}
|
| 903 |
-
}
|
| 904 |
-
}
|
| 905 |
-
"""
|
| 906 |
-
# Create mapping from agent_identifier to agent_name
|
| 907 |
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
|
| 908 |
|
| 909 |
if not all_metadata_dict:
|
| 910 |
return {'agents': [], 'months': [], 'data': {}}
|
| 911 |
|
| 912 |
-
# Group by agent and month
|
| 913 |
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 914 |
|
| 915 |
-
# Flatten the dict of lists into a single list with agent_identifier added
|
| 916 |
for agent_identifier, metadata_list in all_metadata_dict.items():
|
| 917 |
for review_meta in metadata_list:
|
| 918 |
reviewed_at = review_meta.get('reviewed_at')
|
|
@@ -920,7 +702,6 @@ def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
|
|
| 920 |
if not reviewed_at:
|
| 921 |
continue
|
| 922 |
|
| 923 |
-
# Get agent_name from identifier
|
| 924 |
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
|
| 925 |
|
| 926 |
try:
|
|
@@ -931,13 +712,11 @@ def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
|
|
| 931 |
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
|
| 932 |
continue
|
| 933 |
|
| 934 |
-
# Get all unique months and sort them
|
| 935 |
all_months = set()
|
| 936 |
for agent_data in agent_month_data.values():
|
| 937 |
all_months.update(agent_data.keys())
|
| 938 |
months = sorted(list(all_months))
|
| 939 |
|
| 940 |
-
# Calculate metrics for each agent and month
|
| 941 |
result_data = {}
|
| 942 |
for agent_name, month_dict in agent_month_data.items():
|
| 943 |
acceptance_rates = []
|
|
@@ -947,18 +726,14 @@ def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
|
|
| 947 |
for month in months:
|
| 948 |
reviews_in_month = month_dict.get(month, [])
|
| 949 |
|
| 950 |
-
# Count merged PRs
|
| 951 |
merged_count = sum(1 for review in reviews_in_month
|
| 952 |
if get_pr_status_from_metadata(review) == 'merged')
|
| 953 |
|
| 954 |
-
# Count rejected PRs
|
| 955 |
rejected_count = sum(1 for review in reviews_in_month
|
| 956 |
if get_pr_status_from_metadata(review) == 'closed')
|
| 957 |
|
| 958 |
-
# Total reviews
|
| 959 |
total_count = len(reviews_in_month)
|
| 960 |
|
| 961 |
-
# Calculate acceptance rate (exclude pending PRs)
|
| 962 |
completed_count = merged_count + rejected_count
|
| 963 |
acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None
|
| 964 |
|
|
@@ -982,16 +757,7 @@ def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
|
|
| 982 |
|
| 983 |
|
| 984 |
def construct_leaderboard_from_metadata(all_metadata_dict, agents):
|
| 985 |
-
"""
|
| 986 |
-
Construct leaderboard from in-memory review metadata.
|
| 987 |
-
|
| 988 |
-
Args:
|
| 989 |
-
all_metadata_dict: Dictionary mapping agent identifier to list of PR metadata
|
| 990 |
-
agents: List of agent dictionaries with metadata
|
| 991 |
-
|
| 992 |
-
Returns:
|
| 993 |
-
Dictionary of agent stats.
|
| 994 |
-
"""
|
| 995 |
if not agents:
|
| 996 |
print("Error: No agents found")
|
| 997 |
return {}
|
|
@@ -1002,10 +768,7 @@ def construct_leaderboard_from_metadata(all_metadata_dict, agents):
|
|
| 1002 |
identifier = agent.get('github_identifier')
|
| 1003 |
agent_name = agent.get('name', 'Unknown')
|
| 1004 |
|
| 1005 |
-
# Get metadata for this agent from the dictionary
|
| 1006 |
bot_metadata = all_metadata_dict.get(identifier, [])
|
| 1007 |
-
|
| 1008 |
-
# Calculate stats
|
| 1009 |
stats = calculate_review_stats_from_metadata(bot_metadata)
|
| 1010 |
|
| 1011 |
cache_dict[identifier] = {
|
|
@@ -1019,16 +782,7 @@ def construct_leaderboard_from_metadata(all_metadata_dict, agents):
|
|
| 1019 |
|
| 1020 |
|
| 1021 |
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
| 1022 |
-
"""
|
| 1023 |
-
Save leaderboard data and monthly metrics to HuggingFace dataset as swe-review.json.
|
| 1024 |
-
|
| 1025 |
-
Args:
|
| 1026 |
-
leaderboard_dict: Dictionary of agent stats from construct_leaderboard_from_metadata()
|
| 1027 |
-
monthly_metrics: Monthly metrics data from calculate_monthly_metrics_by_agent()
|
| 1028 |
-
|
| 1029 |
-
Returns:
|
| 1030 |
-
bool: True if successful, False otherwise
|
| 1031 |
-
"""
|
| 1032 |
try:
|
| 1033 |
token = get_hf_token()
|
| 1034 |
if not token:
|
|
@@ -1037,7 +791,6 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
|
| 1037 |
api = HfApi(token=token)
|
| 1038 |
filename = "swe-review.json"
|
| 1039 |
|
| 1040 |
-
# Combine leaderboard and monthly metrics
|
| 1041 |
combined_data = {
|
| 1042 |
'last_updated': datetime.now(timezone.utc).isoformat(),
|
| 1043 |
'leaderboard': leaderboard_dict,
|
|
@@ -1047,12 +800,10 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
|
| 1047 |
}
|
| 1048 |
}
|
| 1049 |
|
| 1050 |
-
# Save locally first
|
| 1051 |
with open(filename, 'w') as f:
|
| 1052 |
json.dump(combined_data, f, indent=2)
|
| 1053 |
|
| 1054 |
try:
|
| 1055 |
-
# Upload to HuggingFace with retry logic
|
| 1056 |
upload_file_with_backoff(
|
| 1057 |
api=api,
|
| 1058 |
path_or_fileobj=filename,
|
|
@@ -1062,7 +813,6 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
|
| 1062 |
)
|
| 1063 |
return True
|
| 1064 |
finally:
|
| 1065 |
-
# Always clean up local file
|
| 1066 |
if os.path.exists(filename):
|
| 1067 |
os.remove(filename)
|
| 1068 |
|
|
@@ -1074,21 +824,19 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
|
| 1074 |
|
| 1075 |
|
| 1076 |
# =============================================================================
|
| 1077 |
-
#
|
| 1078 |
# =============================================================================
|
| 1079 |
|
| 1080 |
def mine_all_agents():
|
| 1081 |
"""
|
| 1082 |
-
Mine review metadata for all agents
|
| 1083 |
-
Downloads GHArchive data
|
| 1084 |
"""
|
| 1085 |
-
# Step 1: Download GHArchive data
|
| 1086 |
print(f"\n[1/5] Downloading GHArchive data...")
|
| 1087 |
|
| 1088 |
if not download_all_gharchive_data():
|
| 1089 |
print("Warning: Download had errors, continuing with available data...")
|
| 1090 |
|
| 1091 |
-
# Step 2: Load agent metadata from HuggingFace
|
| 1092 |
print(f"\n[2/5] Loading agent metadata...")
|
| 1093 |
|
| 1094 |
agents = load_agents_from_hf()
|
|
@@ -1096,7 +844,6 @@ def mine_all_agents():
|
|
| 1096 |
print("Error: No agents found")
|
| 1097 |
return
|
| 1098 |
|
| 1099 |
-
# Extract all identifiers
|
| 1100 |
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 1101 |
if not identifiers:
|
| 1102 |
print("Error: No valid agent identifiers found")
|
|
@@ -1104,55 +851,42 @@ def mine_all_agents():
|
|
| 1104 |
|
| 1105 |
print(f"\n[3/5] Mining review metadata ({len(identifiers)} agents, {LEADERBOARD_TIME_FRAME_DAYS} days)...")
|
| 1106 |
|
| 1107 |
-
# Initialize DuckDB connection
|
| 1108 |
try:
|
| 1109 |
conn = get_duckdb_connection()
|
| 1110 |
except Exception as e:
|
| 1111 |
print(f"Failed to initialize DuckDB connection: {str(e)}")
|
| 1112 |
return
|
| 1113 |
|
| 1114 |
-
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
|
| 1115 |
current_time = datetime.now(timezone.utc)
|
| 1116 |
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 1117 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1118 |
|
| 1119 |
try:
|
| 1120 |
-
#
|
| 1121 |
-
all_metadata =
|
| 1122 |
conn, identifiers, start_date, end_date
|
| 1123 |
)
|
| 1124 |
|
| 1125 |
-
|
| 1126 |
-
total_prs = sum(len(metadata_list) for metadata_list in all_metadata.values())
|
| 1127 |
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
|
| 1128 |
|
| 1129 |
-
print(f"Query complete: {total_prs} PRs found for {agents_with_data}/{len(agents)} agents")
|
| 1130 |
-
|
| 1131 |
except Exception as e:
|
| 1132 |
print(f"Error during DuckDB fetch: {str(e)}")
|
| 1133 |
import traceback
|
| 1134 |
traceback.print_exc()
|
| 1135 |
return
|
| 1136 |
finally:
|
| 1137 |
-
# Close DuckDB connection
|
| 1138 |
conn.close()
|
| 1139 |
|
| 1140 |
-
# Step 4: Batch upload review metadata with time gaps
|
| 1141 |
print(f"\n[4/5] Uploading review metadata...")
|
| 1142 |
|
| 1143 |
success_count, error_count = batch_upload_review_metadata(all_metadata)
|
| 1144 |
|
| 1145 |
-
# Step 5: Construct and save leaderboard data
|
| 1146 |
print(f"\n[5/5] Saving leaderboard...")
|
| 1147 |
|
| 1148 |
try:
|
| 1149 |
-
# Construct leaderboard from in-memory data
|
| 1150 |
leaderboard_dict = construct_leaderboard_from_metadata(all_metadata, agents)
|
| 1151 |
-
|
| 1152 |
-
# Calculate monthly metrics from in-memory data
|
| 1153 |
monthly_metrics = calculate_monthly_metrics_by_agent(all_metadata, agents)
|
| 1154 |
-
|
| 1155 |
-
# Save to HuggingFace
|
| 1156 |
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
|
| 1157 |
|
| 1158 |
print(f"\nCOMPLETE: {success_count} files uploaded" + (f", {error_count} errors" if error_count > 0 else ""))
|
|
@@ -1168,30 +902,16 @@ def mine_all_agents():
|
|
| 1168 |
# =============================================================================
|
| 1169 |
|
| 1170 |
def setup_scheduler():
|
| 1171 |
-
"""
|
| 1172 |
-
Set up APScheduler to run mining jobs periodically.
|
| 1173 |
-
Schedule is configurable via environment variables.
|
| 1174 |
-
|
| 1175 |
-
Environment variables:
|
| 1176 |
-
- SCHEDULE_ENABLED: Enable/disable scheduler (default: true)
|
| 1177 |
-
- SCHEDULE_DAY_OF_MONTH: Day of month to run (default: 22, fourth week)
|
| 1178 |
-
- SCHEDULE_HOUR: Hour to run (0-23, default: 0)
|
| 1179 |
-
- SCHEDULE_MINUTE: Minute to run (0-59, default: 0)
|
| 1180 |
-
- SCHEDULE_TIMEZONE: Timezone for scheduling (default: UTC)
|
| 1181 |
-
"""
|
| 1182 |
-
# Configure logging for APScheduler
|
| 1183 |
logging.basicConfig(
|
| 1184 |
level=logging.INFO,
|
| 1185 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 1186 |
)
|
| 1187 |
|
| 1188 |
-
# Disable verbose HTTP request logging from httpx (used by huggingface_hub)
|
| 1189 |
logging.getLogger('httpx').setLevel(logging.WARNING)
|
| 1190 |
|
| 1191 |
-
# Create scheduler
|
| 1192 |
scheduler = BlockingScheduler(timezone=SCHEDULE_TIMEZONE)
|
| 1193 |
|
| 1194 |
-
# Create cron trigger with configured schedule (monthly on specific day)
|
| 1195 |
trigger = CronTrigger(
|
| 1196 |
day=SCHEDULE_DAY_OF_MONTH,
|
| 1197 |
hour=SCHEDULE_HOUR,
|
|
@@ -1199,7 +919,6 @@ def setup_scheduler():
|
|
| 1199 |
timezone=SCHEDULE_TIMEZONE
|
| 1200 |
)
|
| 1201 |
|
| 1202 |
-
# Add job to scheduler
|
| 1203 |
scheduler.add_job(
|
| 1204 |
mine_all_agents,
|
| 1205 |
trigger=trigger,
|
|
@@ -1208,13 +927,11 @@ def setup_scheduler():
|
|
| 1208 |
replace_existing=True
|
| 1209 |
)
|
| 1210 |
|
| 1211 |
-
# Print schedule information
|
| 1212 |
from datetime import datetime
|
| 1213 |
next_run = trigger.get_next_fire_time(None, datetime.now(trigger.timezone))
|
| 1214 |
print(f"Scheduler: Monthly on day {SCHEDULE_DAY_OF_MONTH} at {SCHEDULE_HOUR:02d}:{SCHEDULE_MINUTE:02d} {SCHEDULE_TIMEZONE}")
|
| 1215 |
print(f"Next run: {next_run}\n")
|
| 1216 |
|
| 1217 |
-
# Start scheduler (blocking call)
|
| 1218 |
print(f"\nScheduler started")
|
| 1219 |
scheduler.start()
|
| 1220 |
|
|
@@ -1225,8 +942,6 @@ def setup_scheduler():
|
|
| 1225 |
|
| 1226 |
if __name__ == "__main__":
|
| 1227 |
if SCHEDULE_ENABLED:
|
| 1228 |
-
# Run with scheduler
|
| 1229 |
setup_scheduler()
|
| 1230 |
else:
|
| 1231 |
-
# Run without scheduler, just mine once
|
| 1232 |
mine_all_agents()
|
|
|
|
| 25 |
|
| 26 |
AGENTS_REPO = "SWE-Arena/bot_metadata"
|
| 27 |
REVIEW_METADATA_REPO = "SWE-Arena/review_metadata"
|
| 28 |
+
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata"
|
| 29 |
+
LEADERBOARD_TIME_FRAME_DAYS = 180
|
| 30 |
+
GHARCHIVE_DATA_DIR = "../gharchive/data"
|
| 31 |
+
DUCKDB_CACHE_FILE = "cache.duckdb"
|
| 32 |
|
| 33 |
+
# OPTIMIZED DUCKDB CONFIGURATION
|
| 34 |
+
DUCKDB_THREADS = 8
|
| 35 |
+
DUCKDB_MEMORY_LIMIT = "64GB"
|
| 36 |
+
|
| 37 |
+
# Streaming batch configuration
|
| 38 |
+
BATCH_SIZE_DAYS = 7 # Process 1 week at a time (~168 hourly files)
|
| 39 |
+
# At this size: ~7 days × 24 files × ~100MB per file = ~16GB uncompressed per batch
|
| 40 |
|
| 41 |
# Download configuration
|
| 42 |
+
DOWNLOAD_WORKERS = 4
|
| 43 |
+
DOWNLOAD_RETRY_DELAY = 2
|
| 44 |
+
MAX_RETRIES = 5
|
| 45 |
|
| 46 |
# Upload configuration
|
| 47 |
+
UPLOAD_DELAY_SECONDS = 5
|
| 48 |
+
UPLOAD_INITIAL_BACKOFF = 60
|
| 49 |
+
UPLOAD_MAX_BACKOFF = 3600
|
| 50 |
|
| 51 |
# Scheduler configuration
|
| 52 |
+
SCHEDULE_ENABLED = False
|
| 53 |
+
SCHEDULE_DAY_OF_MONTH = 22
|
| 54 |
+
SCHEDULE_HOUR = 0
|
| 55 |
+
SCHEDULE_MINUTE = 0
|
| 56 |
+
SCHEDULE_TIMEZONE = 'UTC'
|
| 57 |
|
| 58 |
# =============================================================================
|
| 59 |
# UTILITY FUNCTIONS
|
|
|
|
| 84 |
|
| 85 |
|
| 86 |
def normalize_date_format(date_string):
|
| 87 |
+
"""Convert date strings or datetime objects to standardized ISO 8601 format with Z suffix."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
if not date_string or date_string == 'N/A':
|
| 89 |
return 'N/A'
|
| 90 |
|
| 91 |
try:
|
| 92 |
import re
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
if isinstance(date_string, datetime):
|
| 95 |
+
return date_string.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 96 |
+
|
| 97 |
+
date_string = re.sub(r'\s+', ' ', date_string.strip())
|
| 98 |
date_string = date_string.replace(' ', 'T')
|
| 99 |
|
|
|
|
|
|
|
| 100 |
if len(date_string) >= 3:
|
| 101 |
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
|
| 102 |
date_string = date_string + ':00'
|
| 103 |
|
|
|
|
| 104 |
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
|
|
|
|
|
|
|
| 105 |
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 106 |
except Exception as e:
|
| 107 |
print(f"Warning: Could not parse date '{date_string}': {e}")
|
|
|
|
| 121 |
# =============================================================================
|
| 122 |
|
| 123 |
def download_file(url):
|
| 124 |
+
"""Download a GHArchive file with retry logic."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
filename = url.split("/")[-1]
|
| 126 |
filepath = os.path.join(GHARCHIVE_DATA_DIR, filename)
|
| 127 |
|
|
|
|
| 128 |
if os.path.exists(filepath):
|
| 129 |
return True
|
| 130 |
|
|
|
|
| 131 |
for attempt in range(MAX_RETRIES):
|
| 132 |
try:
|
| 133 |
response = requests.get(url, timeout=30)
|
|
|
|
| 138 |
|
| 139 |
except requests.exceptions.HTTPError as e:
|
| 140 |
if e.response.status_code == 404:
|
|
|
|
| 141 |
return False
|
| 142 |
else:
|
|
|
|
| 143 |
if attempt < MAX_RETRIES - 1:
|
| 144 |
+
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
|
| 145 |
print(f" ⚠ {filename}: HTTP error {e.response.status_code}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
| 146 |
time.sleep(wait_time)
|
| 147 |
else:
|
|
|
|
| 150 |
except (requests.exceptions.Timeout,
|
| 151 |
requests.exceptions.ConnectionError,
|
| 152 |
requests.exceptions.ReadTimeout) as e:
|
|
|
|
| 153 |
if attempt < MAX_RETRIES - 1:
|
| 154 |
+
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
|
| 155 |
print(f" ⚠ {filename}: {type(e).__name__}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
| 156 |
time.sleep(wait_time)
|
| 157 |
else:
|
| 158 |
print(f" ✗ {filename}: Failed after {MAX_RETRIES} attempts - {type(e).__name__}")
|
| 159 |
|
| 160 |
except Exception as e:
|
|
|
|
| 161 |
if attempt < MAX_RETRIES - 1:
|
| 162 |
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
|
| 163 |
print(f" ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
|
|
|
| 169 |
|
| 170 |
|
| 171 |
def download_all_gharchive_data():
|
| 172 |
+
"""Download all GHArchive data files for the last LEADERBOARD_TIME_FRAME_DAYS."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
os.makedirs(GHARCHIVE_DATA_DIR, exist_ok=True)
|
| 174 |
|
|
|
|
| 175 |
end_date = datetime.now()
|
| 176 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 177 |
|
|
|
|
| 179 |
current_date = start_date
|
| 180 |
while current_date <= end_date:
|
| 181 |
date_str = current_date.strftime("%Y-%m-%d")
|
|
|
|
| 182 |
for hour in range(24):
|
| 183 |
url = f"https://data.gharchive.org/{date_str}-{hour}.json.gz"
|
| 184 |
urls.append(url)
|
|
|
|
| 188 |
|
| 189 |
try:
|
| 190 |
with ThreadPoolExecutor(max_workers=DOWNLOAD_WORKERS) as executor:
|
|
|
|
| 191 |
futures = [executor.submit(download_file, url) for url in urls]
|
|
|
|
|
|
|
| 192 |
for future in as_completed(futures):
|
| 193 |
downloads_processed += 1
|
| 194 |
|
|
|
|
| 203 |
|
| 204 |
|
| 205 |
# =============================================================================
|
| 206 |
+
# HUGGINGFACE API WRAPPERS
|
| 207 |
# =============================================================================
|
| 208 |
|
| 209 |
def is_retryable_error(e):
|
| 210 |
+
"""Check if exception is retryable (rate limit or timeout error)."""
|
|
|
|
|
|
|
|
|
|
| 211 |
if isinstance(e, HfHubHTTPError):
|
| 212 |
if e.response.status_code == 429:
|
| 213 |
return True
|
| 214 |
|
|
|
|
| 215 |
if isinstance(e, (requests.exceptions.Timeout,
|
| 216 |
requests.exceptions.ReadTimeout,
|
| 217 |
requests.exceptions.ConnectTimeout)):
|
| 218 |
return True
|
| 219 |
|
|
|
|
| 220 |
if isinstance(e, Exception):
|
| 221 |
error_str = str(e).lower()
|
| 222 |
if 'timeout' in error_str or 'timed out' in error_str:
|
|
|
|
| 237 |
)
|
| 238 |
)
|
| 239 |
def list_repo_files_with_backoff(api, **kwargs):
|
| 240 |
+
"""Wrapper for api.list_repo_files() with exponential backoff."""
|
| 241 |
return api.list_repo_files(**kwargs)
|
| 242 |
|
| 243 |
|
|
|
|
| 253 |
)
|
| 254 |
)
|
| 255 |
def hf_hub_download_with_backoff(**kwargs):
|
| 256 |
+
"""Wrapper for hf_hub_download() with exponential backoff."""
|
| 257 |
return hf_hub_download(**kwargs)
|
| 258 |
|
| 259 |
|
|
|
|
| 269 |
)
|
| 270 |
)
|
| 271 |
def upload_file_with_backoff(api, **kwargs):
|
| 272 |
+
"""Wrapper for api.upload_file() with exponential backoff."""
|
| 273 |
return api.upload_file(**kwargs)
|
| 274 |
|
| 275 |
|
|
|
|
| 285 |
)
|
| 286 |
)
|
| 287 |
def upload_folder_with_backoff(api, **kwargs):
|
| 288 |
+
"""Wrapper for api.upload_folder() with exponential backoff."""
|
| 289 |
return api.upload_folder(**kwargs)
|
| 290 |
|
| 291 |
|
| 292 |
def get_duckdb_connection():
|
| 293 |
"""
|
| 294 |
+
Initialize DuckDB connection with OPTIMIZED memory settings.
|
| 295 |
+
Uses persistent database and reduced memory footprint.
|
|
|
|
|
|
|
| 296 |
"""
|
|
|
|
| 297 |
conn = duckdb.connect(DUCKDB_CACHE_FILE)
|
| 298 |
|
| 299 |
+
# OPTIMIZED SETTINGS
|
| 300 |
+
conn.execute(f"SET threads TO {DUCKDB_THREADS};")
|
| 301 |
+
conn.execute("SET preserve_insertion_order = false;")
|
| 302 |
+
conn.execute("SET enable_object_cache = true;")
|
| 303 |
+
conn.execute("SET temp_directory = '/tmp/duckdb_temp';")
|
| 304 |
+
conn.execute(f"SET memory_limit = '{DUCKDB_MEMORY_LIMIT}';")
|
| 305 |
+
conn.execute(f"SET max_memory = '{DUCKDB_MEMORY_LIMIT}';")
|
| 306 |
|
| 307 |
return conn
|
| 308 |
|
| 309 |
|
| 310 |
def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_DIR):
|
| 311 |
+
"""Generate file path patterns for GHArchive data in date range (only existing files)."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
file_patterns = []
|
| 313 |
missing_dates = set()
|
| 314 |
|
|
|
|
| 316 |
end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 317 |
|
| 318 |
while current_date <= end_day:
|
|
|
|
| 319 |
date_has_files = False
|
| 320 |
for hour in range(24):
|
| 321 |
pattern = os.path.join(data_dir, f"{current_date.strftime('%Y-%m-%d')}-{hour}.json.gz")
|
|
|
|
| 322 |
if os.path.exists(pattern):
|
| 323 |
file_patterns.append(pattern)
|
| 324 |
date_has_files = True
|
| 325 |
|
|
|
|
| 326 |
if not date_has_files:
|
| 327 |
missing_dates.add(current_date.strftime('%Y-%m-%d'))
|
| 328 |
|
|
|
|
| 329 |
current_date += timedelta(days=1)
|
| 330 |
|
|
|
|
| 331 |
if missing_dates:
|
| 332 |
+
print(f" ⚠ Skipping {len(missing_dates)} date(s) with no data")
|
| 333 |
|
| 334 |
return file_patterns
|
| 335 |
|
| 336 |
|
| 337 |
# =============================================================================
|
| 338 |
+
# STREAMING BATCH PROCESSING FOR REVIEW METADATA
|
| 339 |
# =============================================================================
|
| 340 |
|
| 341 |
+
def fetch_all_review_metadata_streaming(conn, identifiers, start_date, end_date):
|
| 342 |
"""
|
| 343 |
+
OPTIMIZED: Fetch review metadata using streaming batch processing.
|
| 344 |
|
| 345 |
+
Processes GHArchive files in BATCH_SIZE_DAYS chunks to limit memory usage.
|
| 346 |
+
Instead of loading 180 days (4,344 files) at once, processes 7 days at a time.
|
| 347 |
+
|
| 348 |
+
This prevents OOM errors by:
|
| 349 |
+
1. Only keeping ~168 hourly files in memory per batch (vs 4,344)
|
| 350 |
+
2. Incrementally building the results dictionary
|
| 351 |
+
3. Allowing DuckDB to garbage collect after each batch
|
| 352 |
|
| 353 |
Args:
|
| 354 |
conn: DuckDB connection instance
|
|
|
|
| 357 |
end_date: End datetime (timezone-aware)
|
| 358 |
|
| 359 |
Returns:
|
| 360 |
+
Dictionary mapping agent identifier to list of review metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
"""
|
| 362 |
+
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 363 |
+
metadata_by_agent = defaultdict(list)
|
| 364 |
|
| 365 |
+
# Calculate total batches
|
| 366 |
+
total_days = (end_date - start_date).days
|
| 367 |
+
total_batches = (total_days // BATCH_SIZE_DAYS) + 1
|
| 368 |
|
| 369 |
+
# Process in configurable batches
|
| 370 |
+
current_date = start_date
|
| 371 |
+
batch_num = 0
|
| 372 |
+
total_reviews = 0
|
| 373 |
|
| 374 |
+
print(f" Streaming {total_batches} batches of {BATCH_SIZE_DAYS}-day intervals...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
+
while current_date <= end_date:
|
| 377 |
+
batch_num += 1
|
| 378 |
+
batch_end = min(current_date + timedelta(days=BATCH_SIZE_DAYS - 1), end_date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
+
# Get file patterns for THIS BATCH ONLY
|
| 381 |
+
file_patterns = generate_file_path_patterns(current_date, batch_end)
|
| 382 |
+
|
| 383 |
+
if not file_patterns:
|
| 384 |
+
print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} - NO DATA")
|
| 385 |
+
current_date = batch_end + timedelta(days=1)
|
| 386 |
+
continue
|
| 387 |
+
|
| 388 |
+
# Progress indicator
|
| 389 |
+
print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} ({len(file_patterns)} files)... ", end="", flush=True)
|
| 390 |
+
|
| 391 |
+
# Build file patterns SQL for THIS BATCH
|
| 392 |
+
file_patterns_sql = '[' + ', '.join([f"'{fp}'" for fp in file_patterns]) + ']'
|
| 393 |
+
|
| 394 |
+
# SIMPLIFIED query for review metadata
|
| 395 |
+
# Focuses on PullRequestReviewEvent and tracks PR status
|
| 396 |
+
query = f"""
|
| 397 |
+
WITH review_events AS (
|
| 398 |
+
SELECT
|
| 399 |
+
payload.pull_request.html_url as pr_url,
|
| 400 |
+
actor.login as reviewer,
|
| 401 |
+
COALESCE(payload.review.submitted_at, created_at) as reviewed_at
|
| 402 |
+
FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
|
| 403 |
+
WHERE
|
| 404 |
+
type = 'PullRequestReviewEvent'
|
| 405 |
+
AND payload.pull_request.html_url IS NOT NULL
|
| 406 |
+
AND actor.login IN ({identifier_list})
|
| 407 |
+
),
|
| 408 |
+
pr_status AS (
|
| 409 |
+
SELECT
|
| 410 |
+
payload.pull_request.html_url as pr_url,
|
| 411 |
+
payload.pull_request.merged as is_merged,
|
| 412 |
+
payload.pull_request.merged_at as merged_at,
|
| 413 |
+
payload.pull_request.closed_at as closed_at,
|
| 414 |
+
ROW_NUMBER() OVER (PARTITION BY payload.pull_request.html_url ORDER BY created_at DESC) as rn
|
| 415 |
+
FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
|
| 416 |
+
WHERE
|
| 417 |
+
type = 'PullRequestEvent'
|
| 418 |
+
AND payload.action = 'closed'
|
| 419 |
+
AND payload.pull_request.html_url IS NOT NULL
|
| 420 |
+
AND payload.pull_request.html_url IN (SELECT DISTINCT pr_url FROM review_events)
|
| 421 |
+
)
|
| 422 |
+
SELECT
|
| 423 |
+
re.reviewer,
|
| 424 |
+
re.pr_url as url,
|
| 425 |
+
re.reviewed_at,
|
| 426 |
+
ps.merged_at,
|
| 427 |
+
ps.closed_at
|
| 428 |
+
FROM review_events re
|
| 429 |
+
LEFT JOIN (SELECT * FROM pr_status WHERE rn = 1) ps ON re.pr_url = ps.pr_url
|
| 430 |
+
ORDER BY re.reviewer, re.reviewed_at DESC
|
| 431 |
+
"""
|
| 432 |
+
|
| 433 |
+
try:
|
| 434 |
results = conn.execute(query).fetchall()
|
| 435 |
+
batch_reviews = 0
|
| 436 |
+
|
| 437 |
+
# Add results to accumulating dictionary
|
| 438 |
+
for row in results:
|
| 439 |
+
reviewer = row[0]
|
| 440 |
+
url = row[1]
|
| 441 |
+
reviewed_at = normalize_date_format(row[2]) if row[2] else None
|
| 442 |
+
merged_at = normalize_date_format(row[3]) if row[3] else None
|
| 443 |
+
closed_at = normalize_date_format(row[4]) if row[4] else None
|
| 444 |
+
|
| 445 |
+
if not url or not reviewed_at:
|
| 446 |
+
continue
|
| 447 |
+
|
| 448 |
+
review_metadata = {
|
| 449 |
+
'url': url,
|
| 450 |
+
'reviewed_at': reviewed_at,
|
| 451 |
+
'merged_at': merged_at,
|
| 452 |
+
'closed_at': closed_at,
|
| 453 |
+
}
|
| 454 |
|
| 455 |
+
metadata_by_agent[reviewer].append(review_metadata)
|
| 456 |
+
batch_reviews += 1
|
| 457 |
+
total_reviews += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
|
| 459 |
+
print(f"✓ {batch_reviews} reviews found")
|
|
|
|
| 460 |
|
| 461 |
+
except Exception as e:
|
| 462 |
+
print(f"\n ✗ Batch {batch_num} error: {str(e)}")
|
| 463 |
+
import traceback
|
| 464 |
+
traceback.print_exc()
|
| 465 |
+
|
| 466 |
+
# Move to next batch
|
| 467 |
+
current_date = batch_end + timedelta(days=1)
|
| 468 |
+
|
| 469 |
+
# Final summary
|
| 470 |
+
agents_with_data = sum(1 for reviews in metadata_by_agent.values() if reviews)
|
| 471 |
+
print(f"\n ✓ Complete: {total_reviews} reviews found for {agents_with_data}/{len(identifiers)} agents")
|
| 472 |
+
|
| 473 |
+
return dict(metadata_by_agent)
|
| 474 |
|
| 475 |
|
| 476 |
# =============================================================================
|
| 477 |
+
# HUGGINGFACE STORAGE FUNCTIONS
|
| 478 |
# =============================================================================
|
| 479 |
|
| 480 |
def group_metadata_by_date(metadata_list):
|
| 481 |
+
"""Group review metadata by date for daily storage."""
|
|
|
|
|
|
|
|
|
|
| 482 |
grouped = defaultdict(list)
|
| 483 |
|
| 484 |
for review_meta in metadata_list:
|
|
|
|
| 497 |
|
| 498 |
|
| 499 |
def upload_single_file_with_retry(api, local_path, repo_path, repo_id, repo_type, commit_message, max_retries=MAX_RETRIES):
|
| 500 |
+
"""Upload a single file with exponential backoff retry logic."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 501 |
for attempt in range(max_retries):
|
| 502 |
try:
|
| 503 |
upload_file_with_backoff(
|
|
|
|
| 511 |
return True
|
| 512 |
except Exception as e:
|
| 513 |
if attempt < max_retries - 1:
|
|
|
|
| 514 |
wait_time = min(UPLOAD_INITIAL_BACKOFF * (2 ** attempt), UPLOAD_MAX_BACKOFF)
|
| 515 |
print(f" {e} error on attempt {attempt + 1}/{max_retries}. Retrying in {wait_time}s...")
|
| 516 |
time.sleep(wait_time)
|
|
|
|
| 521 |
|
| 522 |
|
| 523 |
def batch_upload_review_metadata(all_metadata):
|
| 524 |
+
"""Upload review metadata for all agents with time gaps between uploads."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 525 |
try:
|
| 526 |
token = get_hf_token()
|
| 527 |
if not token:
|
|
|
|
| 533 |
error_count = 0
|
| 534 |
total_files = 0
|
| 535 |
|
|
|
|
| 536 |
for agent_identifier, metadata_list in all_metadata.items():
|
| 537 |
if metadata_list:
|
| 538 |
grouped = group_metadata_by_date(metadata_list)
|
|
|
|
| 546 |
if not metadata_list:
|
| 547 |
continue
|
| 548 |
|
|
|
|
| 549 |
grouped = group_metadata_by_date(metadata_list)
|
| 550 |
|
|
|
|
| 551 |
agent_temp_dir = tempfile.mkdtemp()
|
| 552 |
|
| 553 |
try:
|
|
|
|
| 554 |
local_files = []
|
| 555 |
for (review_year, month, day), day_metadata in grouped.items():
|
| 556 |
filename = f"{review_year}.{month:02d}.{day:02d}.jsonl"
|
| 557 |
local_path = os.path.join(agent_temp_dir, filename)
|
| 558 |
repo_path = f"{agent_identifier}/{filename}"
|
| 559 |
|
|
|
|
| 560 |
day_metadata.sort(key=lambda x: x.get('reviewed_at', ''), reverse=True)
|
|
|
|
|
|
|
| 561 |
save_jsonl(local_path, day_metadata)
|
| 562 |
local_files.append((local_path, repo_path, len(day_metadata)))
|
| 563 |
|
|
|
|
| 564 |
agent_success = 0
|
| 565 |
agent_error = 0
|
| 566 |
|
|
|
|
| 582 |
agent_error += 1
|
| 583 |
error_count += 1
|
| 584 |
|
|
|
|
| 585 |
if file_idx < len(local_files):
|
| 586 |
time.sleep(UPLOAD_DELAY_SECONDS)
|
| 587 |
|
| 588 |
finally:
|
|
|
|
| 589 |
if os.path.exists(agent_temp_dir):
|
| 590 |
import shutil
|
| 591 |
shutil.rmtree(agent_temp_dir)
|
|
|
|
| 605 |
|
| 606 |
|
| 607 |
def load_agents_from_hf():
|
| 608 |
+
"""Load all agent metadata JSON files from HuggingFace dataset."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 609 |
try:
|
| 610 |
api = HfApi()
|
| 611 |
agents = []
|
| 612 |
|
|
|
|
| 613 |
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
|
|
|
|
|
|
|
| 614 |
json_files = [f for f in files if f.endswith('.json')]
|
| 615 |
|
|
|
|
| 616 |
for json_file in json_files:
|
| 617 |
try:
|
| 618 |
file_path = hf_hub_download_with_backoff(
|
|
|
|
| 624 |
with open(file_path, 'r') as f:
|
| 625 |
agent_data = json.load(f)
|
| 626 |
|
|
|
|
| 627 |
if agent_data.get('status') != 'public':
|
| 628 |
continue
|
| 629 |
|
|
|
|
| 630 |
github_identifier = json_file.replace('.json', '')
|
| 631 |
agent_data['github_identifier'] = github_identifier
|
| 632 |
|
|
|
|
| 637 |
continue
|
| 638 |
|
| 639 |
print(f"Download complete: {len(agents)} agents")
|
|
|
|
| 640 |
return agents
|
| 641 |
|
| 642 |
except Exception as e:
|
|
|
|
| 644 |
return []
|
| 645 |
|
| 646 |
|
| 647 |
+
# =============================================================================
|
| 648 |
+
# STATISTICS CALCULATION
|
| 649 |
+
# =============================================================================
|
| 650 |
|
| 651 |
+
def get_pr_status_from_metadata(review_meta):
|
| 652 |
+
"""Derive PR status from merged_at and closed_at fields."""
|
|
|
|
| 653 |
merged_at = review_meta.get('merged_at')
|
| 654 |
closed_at = review_meta.get('closed_at')
|
| 655 |
|
|
|
|
| 662 |
|
| 663 |
|
| 664 |
def calculate_review_stats_from_metadata(metadata_list):
|
| 665 |
+
"""Calculate statistics from a list of review metadata."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 666 |
total_reviews = len(metadata_list)
|
| 667 |
|
|
|
|
| 668 |
merged_prs = sum(1 for review_meta in metadata_list
|
| 669 |
+
if get_pr_status_from_metadata(review_meta) == 'merged')
|
| 670 |
|
|
|
|
| 671 |
rejected_prs = sum(1 for review_meta in metadata_list
|
| 672 |
if get_pr_status_from_metadata(review_meta) == 'closed')
|
| 673 |
|
|
|
|
| 674 |
pending_prs = sum(1 for review_meta in metadata_list
|
| 675 |
if get_pr_status_from_metadata(review_meta) == 'open')
|
| 676 |
|
|
|
|
| 687 |
|
| 688 |
|
| 689 |
def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
|
| 690 |
+
"""Calculate monthly metrics for all agents for visualization."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 691 |
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
|
| 692 |
|
| 693 |
if not all_metadata_dict:
|
| 694 |
return {'agents': [], 'months': [], 'data': {}}
|
| 695 |
|
|
|
|
| 696 |
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 697 |
|
|
|
|
| 698 |
for agent_identifier, metadata_list in all_metadata_dict.items():
|
| 699 |
for review_meta in metadata_list:
|
| 700 |
reviewed_at = review_meta.get('reviewed_at')
|
|
|
|
| 702 |
if not reviewed_at:
|
| 703 |
continue
|
| 704 |
|
|
|
|
| 705 |
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
|
| 706 |
|
| 707 |
try:
|
|
|
|
| 712 |
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
|
| 713 |
continue
|
| 714 |
|
|
|
|
| 715 |
all_months = set()
|
| 716 |
for agent_data in agent_month_data.values():
|
| 717 |
all_months.update(agent_data.keys())
|
| 718 |
months = sorted(list(all_months))
|
| 719 |
|
|
|
|
| 720 |
result_data = {}
|
| 721 |
for agent_name, month_dict in agent_month_data.items():
|
| 722 |
acceptance_rates = []
|
|
|
|
| 726 |
for month in months:
|
| 727 |
reviews_in_month = month_dict.get(month, [])
|
| 728 |
|
|
|
|
| 729 |
merged_count = sum(1 for review in reviews_in_month
|
| 730 |
if get_pr_status_from_metadata(review) == 'merged')
|
| 731 |
|
|
|
|
| 732 |
rejected_count = sum(1 for review in reviews_in_month
|
| 733 |
if get_pr_status_from_metadata(review) == 'closed')
|
| 734 |
|
|
|
|
| 735 |
total_count = len(reviews_in_month)
|
| 736 |
|
|
|
|
| 737 |
completed_count = merged_count + rejected_count
|
| 738 |
acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None
|
| 739 |
|
|
|
|
| 757 |
|
| 758 |
|
| 759 |
def construct_leaderboard_from_metadata(all_metadata_dict, agents):
|
| 760 |
+
"""Construct leaderboard from in-memory review metadata."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 761 |
if not agents:
|
| 762 |
print("Error: No agents found")
|
| 763 |
return {}
|
|
|
|
| 768 |
identifier = agent.get('github_identifier')
|
| 769 |
agent_name = agent.get('name', 'Unknown')
|
| 770 |
|
|
|
|
| 771 |
bot_metadata = all_metadata_dict.get(identifier, [])
|
|
|
|
|
|
|
| 772 |
stats = calculate_review_stats_from_metadata(bot_metadata)
|
| 773 |
|
| 774 |
cache_dict[identifier] = {
|
|
|
|
| 782 |
|
| 783 |
|
| 784 |
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
| 785 |
+
"""Save leaderboard data and monthly metrics to HuggingFace dataset."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 786 |
try:
|
| 787 |
token = get_hf_token()
|
| 788 |
if not token:
|
|
|
|
| 791 |
api = HfApi(token=token)
|
| 792 |
filename = "swe-review.json"
|
| 793 |
|
|
|
|
| 794 |
combined_data = {
|
| 795 |
'last_updated': datetime.now(timezone.utc).isoformat(),
|
| 796 |
'leaderboard': leaderboard_dict,
|
|
|
|
| 800 |
}
|
| 801 |
}
|
| 802 |
|
|
|
|
| 803 |
with open(filename, 'w') as f:
|
| 804 |
json.dump(combined_data, f, indent=2)
|
| 805 |
|
| 806 |
try:
|
|
|
|
| 807 |
upload_file_with_backoff(
|
| 808 |
api=api,
|
| 809 |
path_or_fileobj=filename,
|
|
|
|
| 813 |
)
|
| 814 |
return True
|
| 815 |
finally:
|
|
|
|
| 816 |
if os.path.exists(filename):
|
| 817 |
os.remove(filename)
|
| 818 |
|
|
|
|
| 824 |
|
| 825 |
|
| 826 |
# =============================================================================
|
| 827 |
+
# MINING FUNCTION
|
| 828 |
# =============================================================================
|
| 829 |
|
| 830 |
def mine_all_agents():
|
| 831 |
"""
|
| 832 |
+
Mine review metadata for all agents using STREAMING batch processing.
|
| 833 |
+
Downloads GHArchive data, then uses BATCH-based DuckDB queries.
|
| 834 |
"""
|
|
|
|
| 835 |
print(f"\n[1/5] Downloading GHArchive data...")
|
| 836 |
|
| 837 |
if not download_all_gharchive_data():
|
| 838 |
print("Warning: Download had errors, continuing with available data...")
|
| 839 |
|
|
|
|
| 840 |
print(f"\n[2/5] Loading agent metadata...")
|
| 841 |
|
| 842 |
agents = load_agents_from_hf()
|
|
|
|
| 844 |
print("Error: No agents found")
|
| 845 |
return
|
| 846 |
|
|
|
|
| 847 |
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 848 |
if not identifiers:
|
| 849 |
print("Error: No valid agent identifiers found")
|
|
|
|
| 851 |
|
| 852 |
print(f"\n[3/5] Mining review metadata ({len(identifiers)} agents, {LEADERBOARD_TIME_FRAME_DAYS} days)...")
|
| 853 |
|
|
|
|
| 854 |
try:
|
| 855 |
conn = get_duckdb_connection()
|
| 856 |
except Exception as e:
|
| 857 |
print(f"Failed to initialize DuckDB connection: {str(e)}")
|
| 858 |
return
|
| 859 |
|
|
|
|
| 860 |
current_time = datetime.now(timezone.utc)
|
| 861 |
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 862 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 863 |
|
| 864 |
try:
|
| 865 |
+
# USE STREAMING FUNCTION
|
| 866 |
+
all_metadata = fetch_all_review_metadata_streaming(
|
| 867 |
conn, identifiers, start_date, end_date
|
| 868 |
)
|
| 869 |
|
| 870 |
+
total_reviews = sum(len(metadata_list) for metadata_list in all_metadata.values())
|
|
|
|
| 871 |
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
|
| 872 |
|
|
|
|
|
|
|
| 873 |
except Exception as e:
|
| 874 |
print(f"Error during DuckDB fetch: {str(e)}")
|
| 875 |
import traceback
|
| 876 |
traceback.print_exc()
|
| 877 |
return
|
| 878 |
finally:
|
|
|
|
| 879 |
conn.close()
|
| 880 |
|
|
|
|
| 881 |
print(f"\n[4/5] Uploading review metadata...")
|
| 882 |
|
| 883 |
success_count, error_count = batch_upload_review_metadata(all_metadata)
|
| 884 |
|
|
|
|
| 885 |
print(f"\n[5/5] Saving leaderboard...")
|
| 886 |
|
| 887 |
try:
|
|
|
|
| 888 |
leaderboard_dict = construct_leaderboard_from_metadata(all_metadata, agents)
|
|
|
|
|
|
|
| 889 |
monthly_metrics = calculate_monthly_metrics_by_agent(all_metadata, agents)
|
|
|
|
|
|
|
| 890 |
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
|
| 891 |
|
| 892 |
print(f"\nCOMPLETE: {success_count} files uploaded" + (f", {error_count} errors" if error_count > 0 else ""))
|
|
|
|
| 902 |
# =============================================================================
|
| 903 |
|
| 904 |
def setup_scheduler():
|
| 905 |
+
"""Set up APScheduler to run mining jobs periodically."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 906 |
logging.basicConfig(
|
| 907 |
level=logging.INFO,
|
| 908 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 909 |
)
|
| 910 |
|
|
|
|
| 911 |
logging.getLogger('httpx').setLevel(logging.WARNING)
|
| 912 |
|
|
|
|
| 913 |
scheduler = BlockingScheduler(timezone=SCHEDULE_TIMEZONE)
|
| 914 |
|
|
|
|
| 915 |
trigger = CronTrigger(
|
| 916 |
day=SCHEDULE_DAY_OF_MONTH,
|
| 917 |
hour=SCHEDULE_HOUR,
|
|
|
|
| 919 |
timezone=SCHEDULE_TIMEZONE
|
| 920 |
)
|
| 921 |
|
|
|
|
| 922 |
scheduler.add_job(
|
| 923 |
mine_all_agents,
|
| 924 |
trigger=trigger,
|
|
|
|
| 927 |
replace_existing=True
|
| 928 |
)
|
| 929 |
|
|
|
|
| 930 |
from datetime import datetime
|
| 931 |
next_run = trigger.get_next_fire_time(None, datetime.now(trigger.timezone))
|
| 932 |
print(f"Scheduler: Monthly on day {SCHEDULE_DAY_OF_MONTH} at {SCHEDULE_HOUR:02d}:{SCHEDULE_MINUTE:02d} {SCHEDULE_TIMEZONE}")
|
| 933 |
print(f"Next run: {next_run}\n")
|
| 934 |
|
|
|
|
| 935 |
print(f"\nScheduler started")
|
| 936 |
scheduler.start()
|
| 937 |
|
|
|
|
| 942 |
|
| 943 |
if __name__ == "__main__":
|
| 944 |
if SCHEDULE_ENABLED:
|
|
|
|
| 945 |
setup_scheduler()
|
| 946 |
else:
|
|
|
|
| 947 |
mine_all_agents()
|