SWE-Review / msr.py
zhimin-z
- **Assistant**: Display name of the assistant
717cb54
raw
history blame
32.4 kB
import json
import os
import time
from datetime import datetime, timezone, timedelta
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
from dotenv import load_dotenv
import duckdb
import backoff
import requests
import requests.exceptions
from apscheduler.schedulers.blocking import BlockingScheduler
from apscheduler.triggers.cron import CronTrigger
import logging
import traceback
import subprocess
import re
# Load environment variables
load_dotenv()
# =============================================================================
# CONFIGURATION
# =============================================================================
AGENTS_REPO = "SWE-Arena/bot_data"
AGENTS_REPO_LOCAL_PATH = os.path.expanduser("~/bot_data") # Local git clone path
DUCKDB_CACHE_FILE = "cache.duckdb"
GHARCHIVE_DATA_LOCAL_PATH = os.path.expanduser("~/gharchive/data")
LEADERBOARD_FILENAME = f"{os.getenv('COMPOSE_PROJECT_NAME')}.json"
LEADERBOARD_REPO = "SWE-Arena/leaderboard_data"
LEADERBOARD_TIME_FRAME_DAYS = 180
# Git sync configuration (mandatory to get latest bot data)
GIT_SYNC_TIMEOUT = 300 # 5 minutes timeout for git pull
# OPTIMIZED DUCKDB CONFIGURATION
DUCKDB_THREADS = 8
DUCKDB_MEMORY_LIMIT = "64GB"
# Streaming batch configuration
BATCH_SIZE_DAYS = 7 # Process 1 week at a time (~168 hourly files)
# At this size: ~7 days × 24 files × ~100MB per file = ~16GB uncompressed per batch
# Download configuration
DOWNLOAD_WORKERS = 4
DOWNLOAD_RETRY_DELAY = 2
MAX_RETRIES = 5
# Upload configuration
UPLOAD_DELAY_SECONDS = 5
UPLOAD_INITIAL_BACKOFF = 60
UPLOAD_MAX_BACKOFF = 3600
# Scheduler configuration
SCHEDULE_ENABLED = True
SCHEDULE_DAY_OF_WEEK = 'wed' # Wednesday
SCHEDULE_HOUR = 0
SCHEDULE_MINUTE = 0
SCHEDULE_TIMEZONE = 'UTC'
# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================
def load_jsonl(filename):
"""Load JSONL file and return list of dictionaries."""
if not os.path.exists(filename):
return []
data = []
with open(filename, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
try:
data.append(json.loads(line))
except json.JSONDecodeError as e:
print(f"Warning: Skipping invalid JSON line: {e}")
return data
def save_jsonl(filename, data):
"""Save list of dictionaries to JSONL file."""
with open(filename, 'w', encoding='utf-8') as f:
for item in data:
f.write(json.dumps(item) + '\n')
def normalize_date_format(date_string):
"""Convert date strings or datetime objects to standardized ISO 8601 format with Z suffix."""
if not date_string or date_string == 'N/A':
return 'N/A'
try:
if isinstance(date_string, datetime):
return date_string.strftime('%Y-%m-%dT%H:%M:%SZ')
date_string = re.sub(r'\s+', ' ', date_string.strip())
date_string = date_string.replace(' ', 'T')
if len(date_string) >= 3:
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
date_string = date_string + ':00'
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
except Exception as e:
print(f"Warning: Could not parse date '{date_string}': {e}")
return date_string
def get_hf_token():
"""Get HuggingFace token from environment variables."""
token = os.getenv('HF_TOKEN')
if not token:
print("Warning: HF_TOKEN not found in environment variables")
return token
# =============================================================================
# GHARCHIVE DOWNLOAD FUNCTIONS
# =============================================================================
def download_file(url):
"""Download a GHArchive file with retry logic."""
filename = url.split("/")[-1]
filepath = os.path.join(GHARCHIVE_DATA_LOCAL_PATH, filename)
if os.path.exists(filepath):
return True
for attempt in range(MAX_RETRIES):
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
with open(filepath, "wb") as f:
f.write(response.content)
return True
except requests.exceptions.HTTPError as e:
# 404 means the file doesn't exist in GHArchive - skip without retry
if e.response.status_code == 404:
if attempt == 0: # Only log once, not for each retry
print(f" ⚠ {filename}: Not available (404) - skipping")
return False
# Other HTTP errors (5xx, etc.) should be retried
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
print(f" ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
time.sleep(wait_time)
except Exception as e:
# Network errors, timeouts, etc. should be retried
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
print(f" ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
time.sleep(wait_time)
return False
def download_all_gharchive_data():
"""Download all GHArchive data files for the last LEADERBOARD_TIME_FRAME_DAYS."""
os.makedirs(GHARCHIVE_DATA_LOCAL_PATH, exist_ok=True)
end_date = datetime.now(timezone.utc)
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
urls = []
current_date = start_date
while current_date <= end_date:
date_str = current_date.strftime("%Y-%m-%d")
for hour in range(24):
url = f"https://data.gharchive.org/{date_str}-{hour}.json.gz"
urls.append(url)
current_date += timedelta(days=1)
downloads_processed = 0
try:
with ThreadPoolExecutor(max_workers=DOWNLOAD_WORKERS) as executor:
futures = [executor.submit(download_file, url) for url in urls]
for future in as_completed(futures):
downloads_processed += 1
print(f" Download complete: {downloads_processed} files")
return True
except Exception as e:
print(f"Error during download: {str(e)}")
traceback.print_exc()
return False
# =============================================================================
# HUGGINGFACE API WRAPPERS
# =============================================================================
def is_retryable_error(e):
"""Check if exception is retryable (rate limit or timeout error)."""
if isinstance(e, HfHubHTTPError):
if e.response.status_code == 429:
return True
if isinstance(e, (requests.exceptions.Timeout,
requests.exceptions.ReadTimeout,
requests.exceptions.ConnectTimeout)):
return True
if isinstance(e, Exception):
error_str = str(e).lower()
if 'timeout' in error_str or 'timed out' in error_str:
return True
return False
@backoff.on_exception(
backoff.expo,
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_retryable_error(e),
on_backoff=lambda details: print(
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def list_repo_files_with_backoff(api, **kwargs):
"""Wrapper for api.list_repo_files() with exponential backoff."""
return api.list_repo_files(**kwargs)
@backoff.on_exception(
backoff.expo,
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_retryable_error(e),
on_backoff=lambda details: print(
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def hf_hub_download_with_backoff(**kwargs):
"""Wrapper for hf_hub_download() with exponential backoff."""
return hf_hub_download(**kwargs)
@backoff.on_exception(
backoff.expo,
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_retryable_error(e),
on_backoff=lambda details: print(
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def upload_file_with_backoff(api, **kwargs):
"""Wrapper for api.upload_file() with exponential backoff."""
return api.upload_file(**kwargs)
@backoff.on_exception(
backoff.expo,
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_retryable_error(e),
on_backoff=lambda details: print(
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def upload_folder_with_backoff(api, **kwargs):
"""Wrapper for api.upload_folder() with exponential backoff."""
return api.upload_folder(**kwargs)
def get_duckdb_connection():
"""
Initialize DuckDB connection with OPTIMIZED memory settings.
Uses persistent database and reduced memory footprint.
Automatically removes cache file if lock conflict is detected.
"""
try:
conn = duckdb.connect(DUCKDB_CACHE_FILE)
except Exception as e:
# Check if it's a locking error
error_msg = str(e)
if "lock" in error_msg.lower() or "conflicting" in error_msg.lower():
print(f" ⚠ Lock conflict detected, removing {DUCKDB_CACHE_FILE}...")
if os.path.exists(DUCKDB_CACHE_FILE):
os.remove(DUCKDB_CACHE_FILE)
print(f" ✓ Cache file removed, retrying connection...")
# Retry connection after removing cache
conn = duckdb.connect(DUCKDB_CACHE_FILE)
else:
# Re-raise if it's not a locking error
raise
# OPTIMIZED SETTINGS
conn.execute(f"SET threads TO {DUCKDB_THREADS};")
conn.execute("SET preserve_insertion_order = false;")
conn.execute("SET enable_object_cache = true;")
conn.execute("SET temp_directory = '/tmp/duckdb_temp';")
conn.execute(f"SET memory_limit = '{DUCKDB_MEMORY_LIMIT}';") # Per-query limit
conn.execute(f"SET max_memory = '{DUCKDB_MEMORY_LIMIT}';") # Hard cap
return conn
def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_LOCAL_PATH):
"""Generate file path patterns for GHArchive data in date range (only existing files)."""
file_patterns = []
missing_dates = set()
current_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
while current_date <= end_day:
date_has_files = False
for hour in range(24):
pattern = os.path.join(data_dir, f"{current_date.strftime('%Y-%m-%d')}-{hour}.json.gz")
if os.path.exists(pattern):
file_patterns.append(pattern)
date_has_files = True
if not date_has_files:
missing_dates.add(current_date.strftime('%Y-%m-%d'))
current_date += timedelta(days=1)
if missing_dates:
print(f" ⚠ Skipping {len(missing_dates)} date(s) with no data")
return file_patterns
# =============================================================================
# STREAMING BATCH PROCESSING FOR REVIEW METADATA
# =============================================================================
def fetch_all_review_metadata_streaming(conn, identifiers, start_date, end_date):
"""
OPTIMIZED: Fetch review metadata using streaming batch processing.
Processes GHArchive files in BATCH_SIZE_DAYS chunks to limit memory usage.
Instead of loading 180 days (4,344 files) at once, processes 7 days at a time.
This prevents OOM errors by:
1. Only keeping ~168 hourly files in memory per batch (vs 4,344)
2. Incrementally building the results dictionary
3. Allowing DuckDB to garbage collect after each batch
Args:
conn: DuckDB connection instance
identifiers: List of GitHub usernames/bot identifiers
start_date: Start datetime (timezone-aware)
end_date: End datetime (timezone-aware)
Returns:
Dictionary mapping assistant identifier to list of review metadata
"""
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
metadata_by_agent = defaultdict(list)
# Calculate total batches
total_days = (end_date - start_date).days
total_batches = (total_days // BATCH_SIZE_DAYS) + 1
# Process in configurable batches
current_date = start_date
batch_num = 0
total_reviews = 0
print(f" Streaming {total_batches} batches of {BATCH_SIZE_DAYS}-day intervals...")
while current_date <= end_date:
batch_num += 1
batch_end = min(current_date + timedelta(days=BATCH_SIZE_DAYS - 1), end_date)
# Get file patterns for THIS BATCH ONLY
file_patterns = generate_file_path_patterns(current_date, batch_end)
if not file_patterns:
print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} - NO DATA")
current_date = batch_end + timedelta(days=1)
continue
# Progress indicator
print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} ({len(file_patterns)} files)... ", end="", flush=True)
# Build file patterns SQL for THIS BATCH
file_patterns_sql = '[' + ', '.join([f"'{fp}'" for fp in file_patterns]) + ']'
# Query for this batch
# Note: For PullRequestReviewEvent, we use the actor as reviewer
# For PullRequestReviewCommentEvent, we use the commenter as reviewer
query = f"""
WITH review_events AS (
SELECT
CONCAT(
REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'),
'/pull/',
CAST(payload.pull_request.number AS VARCHAR)
) as pr_url,
CASE
WHEN type = 'PullRequestReviewEvent' THEN actor.login
WHEN type = 'PullRequestReviewCommentEvent' THEN struct_extract(struct_extract(payload.comment, 'user'), 'login')
END as reviewer,
created_at as reviewed_at
FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
WHERE
type IN ('PullRequestReviewEvent', 'PullRequestReviewCommentEvent')
AND payload.pull_request.number IS NOT NULL
AND (
(type = 'PullRequestReviewEvent' AND actor.login IN ({identifier_list}))
OR (type = 'PullRequestReviewCommentEvent' AND struct_extract(struct_extract(payload.comment, 'user'), 'login') IN ({identifier_list}))
)
),
pr_status AS (
SELECT
CONCAT(
REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'),
'/pull/',
CAST(payload.pull_request.number AS VARCHAR)
) as pr_url,
TRY_CAST(json_extract_string(to_json(payload), '$.pull_request.merged_at') AS VARCHAR) as merged_at,
created_at as closed_at,
ROW_NUMBER() OVER (PARTITION BY CONCAT(
REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'),
'/pull/',
CAST(payload.pull_request.number AS VARCHAR)
) ORDER BY created_at DESC) as rn
FROM read_json({file_patterns_sql}, union_by_name=false, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
WHERE
type = 'PullRequestEvent'
AND payload.action = 'closed'
AND payload.pull_request.number IS NOT NULL
AND CONCAT(
REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'),
'/pull/',
CAST(payload.pull_request.number AS VARCHAR)
) IN (SELECT DISTINCT pr_url FROM review_events)
)
SELECT
re.reviewer,
re.pr_url as url,
re.reviewed_at,
ps.merged_at,
ps.closed_at
FROM review_events re
LEFT JOIN (SELECT * FROM pr_status WHERE rn = 1) ps ON re.pr_url = ps.pr_url
ORDER BY re.reviewer, re.reviewed_at DESC
"""
try:
results = conn.execute(query).fetchall()
batch_reviews = 0
# Add results to accumulating dictionary
for row in results:
reviewer = row[0]
url = row[1]
reviewed_at = normalize_date_format(row[2]) if row[2] else None
merged_at = normalize_date_format(row[3]) if row[3] else None
closed_at = normalize_date_format(row[4]) if row[4] else None
if not url or not reviewed_at:
continue
review_metadata = {
'url': url,
'reviewed_at': reviewed_at,
'merged_at': merged_at,
'closed_at': closed_at,
}
metadata_by_agent[reviewer].append(review_metadata)
batch_reviews += 1
total_reviews += 1
print(f"✓ {batch_reviews} reviews found")
except Exception as e:
print(f"\n ✗ Batch {batch_num} error: {str(e)}")
traceback.print_exc()
# Move to next batch
current_date = batch_end + timedelta(days=1)
# Final summary
agents_with_data = sum(1 for reviews in metadata_by_agent.values() if reviews)
print(f"\n ✓ Complete: {total_reviews} reviews found for {agents_with_data}/{len(identifiers)} assistants")
return dict(metadata_by_agent)
def sync_agents_repo():
"""
Sync local bot_data repository with remote using git pull.
This is MANDATORY to ensure we have the latest bot data.
Raises exception if sync fails.
"""
if not os.path.exists(AGENTS_REPO_LOCAL_PATH):
error_msg = f"Local repository not found at {AGENTS_REPO_LOCAL_PATH}"
print(f" ✗ {error_msg}")
print(f" Please clone it first: git clone https://huggingface.co/datasets/{AGENTS_REPO}")
raise FileNotFoundError(error_msg)
if not os.path.exists(os.path.join(AGENTS_REPO_LOCAL_PATH, '.git')):
error_msg = f"{AGENTS_REPO_LOCAL_PATH} exists but is not a git repository"
print(f" ✗ {error_msg}")
raise ValueError(error_msg)
try:
# Run git pull with extended timeout due to large repository
result = subprocess.run(
['git', 'pull'],
cwd=AGENTS_REPO_LOCAL_PATH,
capture_output=True,
text=True,
timeout=GIT_SYNC_TIMEOUT
)
if result.returncode == 0:
output = result.stdout.strip()
if "Already up to date" in output or "Already up-to-date" in output:
print(f" ✓ Repository is up to date")
else:
print(f" ✓ Repository synced successfully")
if output:
# Print first few lines of output
lines = output.split('\n')[:5]
for line in lines:
print(f" {line}")
return True
else:
error_msg = f"Git pull failed: {result.stderr.strip()}"
print(f" ✗ {error_msg}")
raise RuntimeError(error_msg)
except subprocess.TimeoutExpired:
error_msg = f"Git pull timed out after {GIT_SYNC_TIMEOUT} seconds"
print(f" ✗ {error_msg}")
raise TimeoutError(error_msg)
except (FileNotFoundError, ValueError, RuntimeError, TimeoutError):
raise # Re-raise expected exceptions
except Exception as e:
error_msg = f"Error syncing repository: {str(e)}"
print(f" ✗ {error_msg}")
raise RuntimeError(error_msg) from e
def load_agents_from_hf():
"""
Load all assistant metadata JSON files from local git repository.
ALWAYS syncs with remote first to ensure we have the latest bot data.
"""
# MANDATORY: Sync with remote first to get latest bot data
print(f" Syncing bot_data repository to get latest assistants...")
sync_agents_repo() # Will raise exception if sync fails
assistants = []
# Scan local directory for JSON files
if not os.path.exists(AGENTS_REPO_LOCAL_PATH):
raise FileNotFoundError(f"Local repository not found at {AGENTS_REPO_LOCAL_PATH}")
# Walk through the directory to find all JSON files
files_processed = 0
print(f" Loading assistant metadata from {AGENTS_REPO_LOCAL_PATH}...")
for root, dirs, files in os.walk(AGENTS_REPO_LOCAL_PATH):
# Skip .git directory
if '.git' in root:
continue
for filename in files:
if not filename.endswith('.json'):
continue
files_processed += 1
file_path = os.path.join(root, filename)
try:
with open(file_path, 'r', encoding='utf-8') as f:
agent_data = json.load(f)
# Only include active assistants
if agent_data.get('status') != 'active':
continue
# Extract github_identifier from filename
github_identifier = filename.replace('.json', '')
agent_data['github_identifier'] = github_identifier
assistants.append(agent_data)
except Exception as e:
print(f" ⚠ Error loading {filename}: {str(e)}")
continue
print(f" ✓ Loaded {len(assistants)} active assistants (from {files_processed} total files)")
return assistants
def get_pr_status_from_metadata(review_meta):
"""Derive PR status from merged_at and closed_at fields."""
merged_at = review_meta.get('merged_at')
closed_at = review_meta.get('closed_at')
if merged_at:
return 'merged'
elif closed_at:
return 'closed'
else:
return 'open'
def calculate_review_stats_from_metadata(metadata_list):
"""Calculate statistics from a list of review metadata."""
total_reviews = len(metadata_list)
merged_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'merged')
rejected_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'closed')
pending_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'open')
# Calculate acceptance rate (exclude pending PRs)
completed_prs = merged_prs + rejected_prs
acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0
return {
'total_reviews': total_reviews,
'merged_prs': merged_prs,
'pending_prs': pending_prs,
'acceptance_rate': round(acceptance_rate, 2),
}
def calculate_monthly_metrics_by_agent(all_metadata_dict, assistants):
"""Calculate monthly metrics for all assistants for visualization."""
identifier_to_name = {assistant.get('github_identifier'): assistant.get('name') for assistant in assistants if assistant.get('github_identifier')}
if not all_metadata_dict:
return {'assistants': [], 'months': [], 'data': {}}
agent_month_data = defaultdict(lambda: defaultdict(list))
for agent_identifier, metadata_list in all_metadata_dict.items():
for review_meta in metadata_list:
reviewed_at = review_meta.get('reviewed_at')
if not reviewed_at:
continue
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
try:
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
month_key = f"{dt.year}-{dt.month:02d}"
agent_month_data[agent_name][month_key].append(review_meta)
except Exception as e:
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
continue
all_months = set()
for agent_data in agent_month_data.values():
all_months.update(agent_data.keys())
months = sorted(list(all_months))
result_data = {}
for agent_name, month_dict in agent_month_data.items():
acceptance_rates = []
total_reviews_list = []
merged_prs_list = []
for month in months:
reviews_in_month = month_dict.get(month, [])
merged_count = sum(1 for review in reviews_in_month
if get_pr_status_from_metadata(review) == 'merged')
rejected_count = sum(1 for review in reviews_in_month
if get_pr_status_from_metadata(review) == 'closed')
total_count = len(reviews_in_month)
completed_count = merged_count + rejected_count
acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None
acceptance_rates.append(acceptance_rate)
total_reviews_list.append(total_count)
merged_prs_list.append(merged_count)
result_data[agent_name] = {
'acceptance_rates': acceptance_rates,
'total_reviews': total_reviews_list,
'merged_prs': merged_prs_list,
}
agents_list = sorted(list(agent_month_data.keys()))
return {
'assistants': agents_list,
'months': months,
'data': result_data
}
def construct_leaderboard_from_metadata(all_metadata_dict, assistants):
"""Construct leaderboard from in-memory review metadata."""
if not assistants:
print("Error: No assistants found")
return {}
cache_dict = {}
for assistant in assistants:
identifier = assistant.get('github_identifier')
agent_name = assistant.get('name', 'Unknown')
bot_metadata = all_metadata_dict.get(identifier, [])
stats = calculate_review_stats_from_metadata(bot_metadata)
cache_dict[identifier] = {
'name': agent_name,
'website': assistant.get('website', 'N/A'),
'github_identifier': identifier,
**stats
}
return cache_dict
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
"""Save leaderboard data and monthly metrics to HuggingFace dataset."""
try:
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found")
api = HfApi(token=token)
combined_data = {
'last_updated': datetime.now(timezone.utc).isoformat(),
'leaderboard': leaderboard_dict,
'monthly_metrics': monthly_metrics,
'metadata': {
'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS
}
}
with open(LEADERBOARD_FILENAME, 'w') as f:
json.dump(combined_data, f, indent=2)
try:
upload_file_with_backoff(
api=api,
path_or_fileobj=LEADERBOARD_FILENAME,
path_in_repo=LEADERBOARD_FILENAME,
repo_id=LEADERBOARD_REPO,
repo_type="dataset"
)
return True
finally:
if os.path.exists(LEADERBOARD_FILENAME):
os.remove(LEADERBOARD_FILENAME)
except Exception as e:
print(f"Error saving leaderboard data: {str(e)}")
traceback.print_exc()
return False
# =============================================================================
# MINING FUNCTION
# =============================================================================
def mine_all_agents():
"""
Mine review metadata for all assistants using STREAMING batch processing.
Downloads GHArchive data, then uses BATCH-based DuckDB queries.
"""
print(f"\n[1/4] Downloading GHArchive data...")
if not download_all_gharchive_data():
print("Warning: Download had errors, continuing with available data...")
print(f"\n[2/4] Loading assistant metadata...")
assistants = load_agents_from_hf()
if not assistants:
print("Error: No assistants found")
return
identifiers = [assistant['github_identifier'] for assistant in assistants if assistant.get('github_identifier')]
if not identifiers:
print("Error: No valid assistant identifiers found")
return
print(f"\n[3/4] Mining review metadata ({len(identifiers)} assistants, {LEADERBOARD_TIME_FRAME_DAYS} days)...")
try:
conn = get_duckdb_connection()
except Exception as e:
print(f"Failed to initialize DuckDB connection: {str(e)}")
return
current_time = datetime.now(timezone.utc)
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
try:
# USE STREAMING FUNCTION
all_metadata = fetch_all_review_metadata_streaming(
conn, identifiers, start_date, end_date
)
except Exception as e:
print(f"Error during DuckDB fetch: {str(e)}")
traceback.print_exc()
return
finally:
conn.close()
print(f"\n[4/4] Saving leaderboard...")
try:
leaderboard_dict = construct_leaderboard_from_metadata(all_metadata, assistants)
monthly_metrics = calculate_monthly_metrics_by_agent(all_metadata, assistants)
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
except Exception as e:
print(f"Error saving leaderboard: {str(e)}")
traceback.print_exc()
# =============================================================================
# SCHEDULER SETUP
# =============================================================================
def setup_scheduler():
"""Set up APScheduler to run mining jobs periodically."""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logging.getLogger('httpx').setLevel(logging.WARNING)
scheduler = BlockingScheduler(timezone=SCHEDULE_TIMEZONE)
trigger = CronTrigger(
day_of_week=SCHEDULE_DAY_OF_WEEK,
hour=SCHEDULE_HOUR,
minute=SCHEDULE_MINUTE,
timezone=SCHEDULE_TIMEZONE
)
scheduler.add_job(
mine_all_agents,
trigger=trigger,
id='mine_all_agents',
name='Mine GHArchive data for all assistants',
replace_existing=True
)
next_run = trigger.get_next_fire_time(None, datetime.now(trigger.timezone))
print(f"Scheduler: Weekly on {SCHEDULE_DAY_OF_WEEK} at {SCHEDULE_HOUR:02d}:{SCHEDULE_MINUTE:02d} {SCHEDULE_TIMEZONE}")
print(f"Next run: {next_run}\n")
print(f"\nScheduler started")
scheduler.start()
# =============================================================================
# ENTRY POINT
# =============================================================================
if __name__ == "__main__":
if SCHEDULE_ENABLED:
setup_scheduler()
else:
mine_all_agents()