Spaces:
Build error
Build error
Commit
·
5f7b93c
1
Parent(s):
338da22
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import streamlit as st
|
|
| 3 |
st.markdown("### Article Classifier")
|
| 4 |
st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
| 5 |
st.markdown("This is a tool for classifying article category by it's title and summary. \n Follow the instructions below")
|
| 6 |
-
# ^-- можно показывать пользователю текст, картинки, ограниченное подмножество html - всё как в jupyter
|
| 7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 8 |
import torch
|
| 9 |
import numpy as np
|
|
@@ -13,9 +12,7 @@ model = AutoModelForSequenceClassification.from_pretrained("Wi/arxiv-topics-dist
|
|
| 13 |
title = st.text_area("Put the title here")
|
| 14 |
abstract = st.text_area("Put the abstract here")
|
| 15 |
if st.button('Press when ready'):
|
| 16 |
-
|
| 17 |
text = 'Title:' + title + '\n' + 'Abstract:' + abstract
|
| 18 |
-
# ^-- показать текстовое поле. В поле text лежит строка, которая находится там в данный момент
|
| 19 |
|
| 20 |
inputs = tokenizer(text, return_tensors="pt")
|
| 21 |
with torch.no_grad():
|
|
@@ -29,12 +26,9 @@ if st.button('Press when ready'):
|
|
| 29 |
while sum < 0.95:
|
| 30 |
predicted_class_id.append(order[i])
|
| 31 |
sum += probs[order[i]]
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
# тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost
|
| 35 |
for id in predicted_class_id:
|
| 36 |
st.markdown(model.config.id2label[id])
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
#st.markdown(model.config.id2label[predicted_class_id])
|
| 40 |
-
# выводим результаты модели в текстовое поле, на потеху пользователю
|
|
|
|
| 3 |
st.markdown("### Article Classifier")
|
| 4 |
st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
| 5 |
st.markdown("This is a tool for classifying article category by it's title and summary. \n Follow the instructions below")
|
|
|
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 7 |
import torch
|
| 8 |
import numpy as np
|
|
|
|
| 12 |
title = st.text_area("Put the title here")
|
| 13 |
abstract = st.text_area("Put the abstract here")
|
| 14 |
if st.button('Press when ready'):
|
|
|
|
| 15 |
text = 'Title:' + title + '\n' + 'Abstract:' + abstract
|
|
|
|
| 16 |
|
| 17 |
inputs = tokenizer(text, return_tensors="pt")
|
| 18 |
with torch.no_grad():
|
|
|
|
| 26 |
while sum < 0.95:
|
| 27 |
predicted_class_id.append(order[i])
|
| 28 |
sum += probs[order[i]]
|
| 29 |
+
i+=1
|
| 30 |
|
| 31 |
+
|
|
|
|
| 32 |
for id in predicted_class_id:
|
| 33 |
st.markdown(model.config.id2label[id])
|
| 34 |
+
|
|
|
|
|
|
|
|
|