Spaces:
Build error
Build error
| import streamlit as st | |
| st.markdown("### Article Classifier") | |
| st.markdown("<img width=200px src='https://media.istockphoto.com/photos/funny-cat-is-studying-chemistry-picture-id526831620'>", unsafe_allow_html=True) | |
| st.markdown("This is a tool for classifying article category by it's title and summary. \n Follow the instructions below") | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
| import torch | |
| import numpy as np | |
| tokenizer = AutoTokenizer.from_pretrained("Wi/arxiv-topics-distilbert-base-cased") | |
| model = AutoModelForSequenceClassification.from_pretrained("Wi/arxiv-topics-distilbert-base-cased") | |
| title = st.text_area("Put the title here") | |
| abstract = st.text_area("Put the abstract here") | |
| if st.button('Press when ready'): | |
| text = 'Title:' + title + '\n' + 'Abstract:' + abstract | |
| inputs = tokenizer(text, return_tensors="pt") | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| probs = logits.softmax(dim=-1).detach().cpu().flatten().numpy().tolist() | |
| order = np.argsort(probs)[::-1] | |
| i = 0 | |
| sum = 0 | |
| predicted_class_id = [] | |
| while sum < 0.95: | |
| predicted_class_id.append(order[i]) | |
| sum += probs[order[i]] | |
| i+=1 | |
| for id in predicted_class_id: | |
| st.markdown(model.config.id2label[id]) | |