Dmitry Beresnev commited on
Commit
de2e885
Β·
1 Parent(s): e98f030

add a risk management module

Browse files
.env.example CHANGED
@@ -3,6 +3,7 @@ FINNHUB_API_TOKEN=
3
  SPACE_ID=
4
  GEMINI_API_TOKEN=
5
  OPENROUTER_API_TOKEN=
 
6
  GOOGLE_APPS_SCRIPT_URL=
7
  WEBHOOK_SECRET=
8
  SPACE_URL=
 
3
  SPACE_ID=
4
  GEMINI_API_TOKEN=
5
  OPENROUTER_API_TOKEN=
6
+ OPENROUTER_API_TOKEN_2=
7
  GOOGLE_APPS_SCRIPT_URL=
8
  WEBHOOK_SECRET=
9
  SPACE_URL=
requirements.txt CHANGED
@@ -4,9 +4,13 @@ fastapi==0.104.1
4
  uvicorn[standard]==0.24.0
5
  httpx>=0.25.0
6
  python-dotenv==1.0.0
7
- pydantic==2.5.0
8
  typing-extensions==4.8.0
9
  pytz==2025.2
10
  datasets
11
  huggingface_hub
12
- pandas
 
 
 
 
 
4
  uvicorn[standard]==0.24.0
5
  httpx>=0.25.0
6
  python-dotenv==1.0.0
7
+ pydantic==2.11.7
8
  typing-extensions==4.8.0
9
  pytz==2025.2
10
  datasets
11
  huggingface_hub
12
+ numpy==1.24.3
13
+ pandas==2.0.3
14
+ yfinance==0.2.65
15
+ google-genai==1.29.0
16
+ TA-Lib==0.6.5
src/core/risk_management/__init__.py ADDED
File without changes
src/core/risk_management/risk_analyzer.py ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime, timedelta
2
+ import os
3
+ from typing import Any
4
+ import warnings
5
+ import asyncio
6
+
7
+ import yfinance as yf
8
+ import numpy as np
9
+ import pandas as pd
10
+ from google import genai
11
+ from google.genai import types
12
+ import talib
13
+
14
+
15
+ warnings.filterwarnings('ignore')
16
+
17
+
18
+ class RiskAnalyzer:
19
+ def __init__(self, gemini_api_key: str):
20
+ self._model_name = 'gemini-2.0-flash-001'
21
+ self.client = genai.Client(
22
+ api_key=gemini_api_key,
23
+ http_options=types.HttpOptions(api_version='v1')
24
+ )
25
+
26
+ def get_stock_data(self, ticker: str, period: str = "3mo") -> pd.DataFrame:
27
+ try:
28
+ stock = yf.Ticker(ticker)
29
+ data = stock.history(period=period)
30
+ return data
31
+ except Exception as e:
32
+ raise Exception(f"Error retrieving data for {ticker}: {str(e)}")
33
+
34
+ def calculate_basic_metrics(self, data: pd.DataFrame) -> dict[str, float]:
35
+ """
36
+ Calculate basic risk metrics for the stock data.
37
+
38
+ Args:
39
+ data (pd.DataFrame): DataFrame with stock prices including 'Close' column.
40
+ Returns:
41
+ dict[str, float]: Dictionary with calculated risk metrics.
42
+ """
43
+ prices = data['Close']
44
+ returns = prices.pct_change().dropna()
45
+
46
+ # Calculate basic metrics
47
+ volatility = returns.std() * np.sqrt(252)
48
+ var_5 = np.percentile(returns, 5)
49
+ max_drawdown = self.calculate_max_drawdown(prices)
50
+ sharpe_ratio = self.calculate_sharpe_ratio(returns)
51
+ sortino_ratio = self.calculate_sortino_ratio(returns)
52
+ beta = self.calculate_beta(prices)
53
+
54
+ return {
55
+ 'volatility': volatility,
56
+ 'var_5': var_5,
57
+ 'max_drawdown': max_drawdown,
58
+ 'sharpe_ratio': sharpe_ratio,
59
+ 'sortino_ratio': sortino_ratio,
60
+ 'beta': beta
61
+ }
62
+
63
+ def calculate_technical_indicators(self, data: pd.DataFrame) -> dict[str, Any]:
64
+ """
65
+ Calculate technical indicators for the stock data.
66
+
67
+ Args:
68
+ data (pd.DataFrame): DataFrame with stock prices including 'High', 'Low', 'Close', and 'Volume' columns.
69
+ Returns:
70
+ dict[str, Any]: Dictionary with calculated technical indicators.
71
+ """
72
+ high = data['High'].values
73
+ low = data['Low'].values
74
+ close = data['Close'].values
75
+ volume = data['Volume'].values
76
+
77
+ # Calculate moving averages
78
+ ema_20 = talib.EMA(close, timeperiod=20)
79
+ ema_50 = talib.EMA(close, timeperiod=50)
80
+ ema_200 = talib.EMA(close, timeperiod=200)
81
+
82
+ # ATR (Average True Range) is a measure of volatility
83
+ atr = talib.ATR(high, low, close, timeperiod=14)
84
+
85
+ # RSI and Stochastic. RSI (Relative Strength Index) is a momentum oscillator that measures the speed and change of price movements.
86
+ # Stochastic Oscillator is a momentum indicator comparing a particular closing price of a security to a range of its prices over a certain period.
87
+ rsi = talib.RSI(close, timeperiod=14)
88
+ slowk, slowd = talib.STOCH(high, low, close)
89
+
90
+ # Bollinger Bands. Bollinger Bands consist of a middle band (SMA) and two outer bands (standard deviations).
91
+ upper_bb, middle_bb, lower_bb = talib.BBANDS(close)
92
+
93
+ # Volume indicators. On-Balance Volume (OBV) is a cumulative volume-based indicator that uses volume flow to predict changes in stock price.
94
+ obv = talib.OBV(close, volume)
95
+ vol_sma = talib.SMA(volume, timeperiod=20)
96
+
97
+ return {
98
+ 'ema_20': ema_20[-1],
99
+ 'ema_50': ema_50[-1],
100
+ 'ema_200': ema_200[-1],
101
+ 'atr': atr[-1],
102
+ 'rsi': rsi[-1],
103
+ 'stoch_k': slowk[-1],
104
+ 'stoch_d': slowd[-1],
105
+ 'bb_upper': upper_bb[-1],
106
+ 'bb_lower': lower_bb[-1],
107
+ 'obv': obv[-1],
108
+ 'volume_ratio': volume[-1] / vol_sma[-1] if vol_sma[-1] > 0 else 1,
109
+ 'current_price': close[-1]
110
+ }
111
+
112
+ def calculate_position_sizing(self, price: float, atr: float, account_capital: float = 10000,
113
+ risk_pct: float = 0.02, atr_multiplier: float = 2.0) -> dict[str, float]:
114
+ """
115
+ Calculate position sizing based on ATR and account capital.
116
+
117
+ Args:
118
+ price (float): Current stock price.
119
+ atr (float): Average True Range (ATR) of the stock.
120
+ account_capital (float): Total capital available for trading.
121
+ risk_pct (float): Percentage of capital to risk on a single trade.
122
+ atr_multiplier (float): Multiplier for ATR to determine stop distance.
123
+ Returns:
124
+ dict[str, float]: Dictionary with recommended shares, position value, stop loss price, actual risk in USD and percentage.
125
+ """
126
+ stop_distance = atr_multiplier * atr
127
+ risk_amount = account_capital * risk_pct
128
+ position_size = risk_amount / stop_distance
129
+
130
+ # Calculate shares and actual position value
131
+ shares = int(position_size / price)
132
+ actual_position_value = shares * price
133
+ actual_risk = shares * stop_distance
134
+
135
+ return {
136
+ 'recommended_shares': shares,
137
+ 'position_value': actual_position_value,
138
+ 'stop_loss_price': price - stop_distance,
139
+ 'actual_risk_usd': actual_risk,
140
+ 'actual_risk_pct': (actual_risk / account_capital) * 100,
141
+ 'atr_stop_distance': stop_distance
142
+ }
143
+
144
+ def calculate_risk_reward_levels(self, price: float, atr: float,
145
+ min_rr: float = 2.0) -> dict[str, float]:
146
+ """
147
+ Calculate risk/reward levels based on ATR and price.
148
+
149
+ Args:
150
+ price (float): Current stock price.
151
+ atr (float): Average True Range (ATR) of the stock.
152
+ min_rr (float): Minimum risk/reward ratio for the first take profit level.
153
+ Returns:
154
+ dict[str, float]: Dictionary with stop loss, take profit levels and risk/reward ratios.
155
+ """
156
+ stop_distance = 2 * atr
157
+ stop_loss = price - stop_distance
158
+ take_profit_1 = price + (stop_distance * min_rr)
159
+ take_profit_2 = price + (stop_distance * 3.0)
160
+
161
+ return {
162
+ 'stop_loss': stop_loss,
163
+ 'take_profit_1': take_profit_1,
164
+ 'take_profit_2': take_profit_2,
165
+ 'risk_reward_1': min_rr,
166
+ 'risk_reward_2': 3.0
167
+ }
168
+
169
+ def analyze_trend_context(self, indicators: dict[str, Any]) -> dict[str, Any]:
170
+ """
171
+ Analyze the trend context based on technical indicators.
172
+
173
+ Args:
174
+ indicators (dict[str, Any]): Dictionary with technical indicators including current price, EMAs, and Bollinger Bands.
175
+ Returns:
176
+ dict[str, Any]: Dictionary with trend analysis and Bollinger Bands position.
177
+ """
178
+ price = indicators['current_price']
179
+ ema20 = indicators['ema_20']
180
+ ema50 = indicators['ema_50']
181
+ ema200 = indicators['ema_200']
182
+
183
+ # Determine trend based on EMAs
184
+ if price > ema20 > ema50 > ema200:
185
+ trend = "Strong uptrend"
186
+ elif price > ema20 > ema50:
187
+ trend = "Uptrend"
188
+ elif price < ema20 < ema50 < ema200:
189
+ trend = "Strong downtrend"
190
+ elif price < ema20 < ema50:
191
+ trend = "Downtrend"
192
+ else:
193
+ trend = "Sideways"
194
+
195
+ # Position in Bollinger Bands
196
+ bb_position = "Middle"
197
+ if price > indicators['bb_upper']:
198
+ bb_position = "Above upper band"
199
+ elif price < indicators['bb_lower']:
200
+ bb_position = "Below lower band"
201
+
202
+ return {
203
+ 'trend': trend,
204
+ 'bb_position': bb_position,
205
+ 'price_vs_ema20': ((price / ema20) - 1) * 100,
206
+ 'ema20_vs_ema50': ((ema20 / ema50) - 1) * 100
207
+ }
208
+
209
+ def calculate_max_drawdown(self, prices: pd.Series) -> float:
210
+ """
211
+ Calculate the maximum drawdown of a stock's price series.
212
+
213
+ Args:
214
+ prices (pd.Series): Series of stock prices.
215
+ Returns:
216
+ float: Maximum drawdown as a percentage.
217
+ """
218
+ cumulative = (1 + prices.pct_change()).cumprod()
219
+ running_max = cumulative.expanding().max()
220
+ drawdown = (cumulative - running_max) / running_max
221
+ return drawdown.min()
222
+
223
+ def calculate_sharpe_ratio(self, returns: pd.Series, risk_free_rate: float = 0.02) -> float:
224
+ """
225
+ Calculate the Sharpe ratio of a stock's returns.
226
+
227
+ Args:
228
+ returns (pd.Series): Series of stock returns.
229
+ risk_free_rate (float): Risk-free rate, default is 2%.
230
+ Returns:
231
+ float: Sharpe ratio.
232
+ """
233
+ excess_returns = returns.mean() * 252 - risk_free_rate
234
+ volatility = returns.std() * np.sqrt(252)
235
+ return excess_returns / volatility if volatility != 0 else 0
236
+
237
+ def calculate_sortino_ratio(self, returns: pd.Series, risk_free_rate: float = 0.02) -> float:
238
+ """
239
+ Calculate the Sortino ratio of a stock's returns.
240
+ Args:
241
+ returns (pd.Series): Series of stock returns.
242
+ risk_free_rate (float): Risk-free rate, default is 2%.
243
+ Returns:
244
+ float: Sortino ratio.
245
+ """
246
+ excess_returns = returns.mean() * 252 - risk_free_rate
247
+ downside_returns = returns[returns < 0]
248
+ downside_deviation = downside_returns.std() * np.sqrt(252)
249
+ return excess_returns / downside_deviation if downside_deviation != 0 else 0
250
+
251
+ def calculate_beta(self, stock_prices: pd.Series, market_ticker: str = "^GSPC") -> float:
252
+ """
253
+ Calculate the beta of a stock relative to a market index.
254
+
255
+ Args:
256
+ stock_prices (pd.Series): Series of stock prices.
257
+ market_ticker (str): Ticker symbol of the market index (default is S&P 500).
258
+ Returns:
259
+ float: Beta value of the stock.
260
+ """
261
+ try:
262
+ market_data = yf.Ticker(market_ticker).history(period="1y")
263
+ stock_returns = stock_prices.pct_change().dropna()
264
+ market_returns = market_data['Close'].pct_change().dropna()
265
+
266
+ common_dates = stock_returns.index.intersection(market_returns.index)
267
+ stock_returns_aligned = stock_returns.loc[common_dates]
268
+ market_returns_aligned = market_returns.loc[common_dates]
269
+
270
+ covariance = np.cov(stock_returns_aligned, market_returns_aligned)[0][1]
271
+ market_variance = np.var(market_returns_aligned)
272
+
273
+ return covariance / market_variance if market_variance != 0 else 1
274
+ except:
275
+ return 1.0
276
+
277
+ def analyze_risks(self, ticker: str, account_capital: float = 10000) -> dict[str, Any]:
278
+ """
279
+ Analyze risks for a given stock ticker and account capital.
280
+
281
+ Args:
282
+ ticker (str): Stock ticker symbol.
283
+ account_capital (float): Total capital available for trading, default is $10,000.
284
+ Returns:
285
+ Dict[str, Any]: Dictionary with analysis results including current price, price change, basic metrics,
286
+ technical indicators, trend analysis, position sizing, and risk/reward levels.
287
+ """
288
+ try:
289
+ data = self.get_stock_data(ticker)
290
+ basic_metrics = self.calculate_basic_metrics(data)
291
+ technical_indicators = self.calculate_technical_indicators(data)
292
+ trend_analysis = self.analyze_trend_context(technical_indicators)
293
+ position_sizing = self.calculate_position_sizing(
294
+ technical_indicators['current_price'],
295
+ technical_indicators['atr'],
296
+ account_capital
297
+ )
298
+ risk_reward = self.calculate_risk_reward_levels(
299
+ technical_indicators['current_price'],
300
+ technical_indicators['atr']
301
+ )
302
+ current_price = technical_indicators['current_price']
303
+ prev_price = data['Close'].iloc[-2]
304
+ price_change = (current_price - prev_price) / prev_price * 100
305
+
306
+ return {
307
+ 'ticker': ticker.upper(),
308
+ 'success': True,
309
+ 'current_price': current_price,
310
+ 'price_change_pct': price_change,
311
+ 'basic_metrics': basic_metrics,
312
+ 'technical_indicators': technical_indicators,
313
+ 'trend_analysis': trend_analysis,
314
+ 'position_sizing': position_sizing,
315
+ 'risk_reward': risk_reward
316
+ }
317
+
318
+ except Exception as e:
319
+ return {'success': False, 'error': str(e)}
320
+
321
+ async def generate_explanation(self, risk_data: dict[str, Any]) -> str:
322
+ """
323
+ Generate a comprehensive risk management analysis explanation in Russian based on the provided risk data.
324
+
325
+ Args:
326
+ risk_data (dict[str, Any]): Dictionary containing risk analysis data including ticker, current price,
327
+ basic metrics, technical indicators, trend analysis, position sizing, and risk/reward levels.
328
+ """
329
+ basic = risk_data['basic_metrics']
330
+ tech = risk_data['technical_indicators']
331
+ trend = risk_data['trend_analysis']
332
+ position = risk_data['position_sizing']
333
+ rr = risk_data['risk_reward']
334
+
335
+ prompt = f"""
336
+ Analyze the comprehensive risk management picture for the stock {risk_data['ticker']} in English.
337
+
338
+ Price: ${risk_data['current_price']:.2f} ({risk_data['price_change_pct']:+.2f}%)
339
+
340
+ RISK METRICS:
341
+ - Volatility: {basic['volatility'] * 100:.1f}%
342
+ - Sharpe: {basic['sharpe_ratio']:.2f}
343
+ - Sortino: {basic['sortino_ratio']:.2f}
344
+ - Max drawdown: {basic['max_drawdown'] * 100:.1f}%
345
+ - Beta: {basic['beta']:.2f}
346
+
347
+ TECHNICAL ANALYSIS:
348
+ - Trend: {trend['trend']}
349
+ - RSI: {tech['rsi']:.1f}
350
+ - ATR: ${tech['atr']:.2f}
351
+ - BB Position: {trend['bb_position']}
352
+ - Volume: {tech['volume_ratio']:.1f}x of average
353
+
354
+ TRADING PLAN:
355
+ - Recommended size: {position['recommended_shares']} shares (${position['position_value']:.0f})
356
+ - Stop-loss: ${position['stop_loss_price']:.2f}
357
+ - Take-profit 1: ${rr['take_profit_1']:.2f} (R/R 2:1)
358
+ - Risk: ${position['actual_risk_usd']:.0f} ({position['actual_risk_pct']:.1f}%)
359
+
360
+ Give a brief assessment:
361
+ 1. Overall risk level (low/medium/high)
362
+ 2. Is it a good time to enter now
363
+ 3. What to pay attention to
364
+
365
+ Maximum 200 words, concise and to the point.
366
+ """
367
+
368
+ try:
369
+ response = await asyncio.to_thread(
370
+ self.client.models.generate_content,
371
+ model=self._model_name,
372
+ contents=prompt
373
+ )
374
+ return response.text
375
+ except Exception as e:
376
+ return f"Failed to generate explanation: {str(e)}"
src/telegram_bot/config.py CHANGED
@@ -15,6 +15,7 @@ class Config:
15
  HF_TOKEN = os.getenv('HF_TOKEN', '')
16
  HF_DATASET_REPO = os.getenv('HF_DATASET_REPO', '')
17
  OPENROUTER_API_KEY_2 = os.getenv('OPENROUTER_API_TOKEN_2', '')
 
18
 
19
  @classmethod
20
  def validate(cls) -> bool:
 
15
  HF_TOKEN = os.getenv('HF_TOKEN', '')
16
  HF_DATASET_REPO = os.getenv('HF_DATASET_REPO', '')
17
  OPENROUTER_API_KEY_2 = os.getenv('OPENROUTER_API_TOKEN_2', '')
18
+ GEMINI_API_KEY = os.getenv('GEMINI_API_TOKEN', '')
19
 
20
  @classmethod
21
  def validate(cls) -> bool:
src/telegram_bot/telegram_bot_service.py CHANGED
@@ -15,6 +15,7 @@ from src.api.finnhub.financial_news_requester import fetch_comp_financial_news
15
  from src.api.openrouter.openrouter_client import OpenRouterClient
16
  from src.api.openrouter.prompt_generator import PromptGenerator
17
  from src.services.news_pooling_service import NewsPollingService
 
18
 
19
 
20
  class TelegramBotService:
@@ -125,9 +126,10 @@ class TelegramBotService:
125
 
126
  async def _handle_command(self, chat_id: int, command: str, user_name: str) -> None:
127
  """Handle bot commands"""
128
- command = command.lower().strip()
 
129
 
130
- if command in ["/start", "/hello"]:
131
  response = f"πŸ‘‹ Hello, {user_name}! Welcome to the Financial News Bot!\n\n"
132
  response += "Available commands:\n"
133
  response += "/hello - Say hello\n"
@@ -135,9 +137,12 @@ class TelegramBotService:
135
  response += "/status - Check bot status\n"
136
  response += "/news - Show all today's news\n"
137
  response += "/run - News feed analysis by ticker (NVDA)\n\n"
138
- response += "/pooling - News feed pooling by ticker (NVDA)\n\n"
 
 
 
139
 
140
- elif command == "/help":
141
  response = "πŸ€– <b>Financial News Bot Help</b>\n\n"
142
  response += "<b>Commands:</b>\n"
143
  response += "/start or /hello - Get started\n"
@@ -145,27 +150,41 @@ class TelegramBotService:
145
  response += "/status - Check bot status\n\n"
146
  response += "<b>About:</b>\n"
147
  response += "This bot provides financial news and sentiment analysis."
148
-
149
- elif command == "/status":
 
 
 
 
 
 
 
 
 
 
150
  response = "βœ… <b>Bot Status: Online</b>\n\n"
151
  response += "πŸ”§ System: Running on HuggingFace Spaces\n"
152
  response += "🌐 Proxy: Google Apps Script\n"
153
  response += "πŸ“Š Status: All systems operational"
154
 
155
- elif command == "/news":
156
  await self.news_feed_analysing(chat_id, command, user_name)
157
  return
158
 
159
- elif command == "/run":
160
  await self.news_feed_analysing_by_ticker(ticker="NVDA", chat_id=chat_id,
161
  text=None, user_name=user_name)
162
  return
163
 
164
- elif command == "/pooling":
165
  await self.news_feed_pooling_by_ticker(ticker="NVDA", chat_id=chat_id,
166
  text=None, user_name=user_name)
167
  return
168
 
 
 
 
 
169
  else:
170
  response = f"❓ Unknown command: {command}\n\n"
171
  response += "Type /help to see available commands."
@@ -293,3 +312,161 @@ class TelegramBotService:
293
  except Exception as e:
294
  main_logger.error(f"Error in news_feed_analysing_by_ticker: {e}")
295
  await self.send_message_via_proxy(chat_id, f"Sorry, there was an error fetching news: {str(e)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  from src.api.openrouter.openrouter_client import OpenRouterClient
16
  from src.api.openrouter.prompt_generator import PromptGenerator
17
  from src.services.news_pooling_service import NewsPollingService
18
+ from src.core.risk_management.risk_analyzer import RiskAnalyzer
19
 
20
 
21
  class TelegramBotService:
 
126
 
127
  async def _handle_command(self, chat_id: int, command: str, user_name: str) -> None:
128
  """Handle bot commands"""
129
+ command_parts = command.lower().strip().split()
130
+ base_command = command_parts[0]
131
 
132
+ if base_command in ["/start", "/hello"]:
133
  response = f"πŸ‘‹ Hello, {user_name}! Welcome to the Financial News Bot!\n\n"
134
  response += "Available commands:\n"
135
  response += "/hello - Say hello\n"
 
137
  response += "/status - Check bot status\n"
138
  response += "/news - Show all today's news\n"
139
  response += "/run - News feed analysis by ticker (NVDA)\n\n"
140
+ response += "/pooling - News feed pooling by ticker (NVDA) πŸ§ͺ (not working properly, testing)\n\n"
141
+ response += "πŸ†• <b>Risk Analysis Commands:</b> πŸ§ͺ (testing)\n"
142
+ response += "/risk TICKER - Full risk analysis (e.g., /risk AAPL)\n"
143
+ response += "/risk TICKER 25000 - Risk analysis with custom capital\n"
144
 
145
+ elif base_command == "/help":
146
  response = "πŸ€– <b>Financial News Bot Help</b>\n\n"
147
  response += "<b>Commands:</b>\n"
148
  response += "/start or /hello - Get started\n"
 
150
  response += "/status - Check bot status\n\n"
151
  response += "<b>About:</b>\n"
152
  response += "This bot provides financial news and sentiment analysis."
153
+ response += "<b>Risk Analysis Commands:</b>\n"
154
+ response += "/risk TICKER - Complete risk analysis\n"
155
+ response += "/risk AAPL - Apple analysis with $10,000 capital\n"
156
+ response += "/risk TSLA 50000 - Tesla analysis with $50,000 capital\n\n"
157
+ response += "<b>What Risk Analysis Includes:</b>\n"
158
+ response += "πŸ“Š Risk metrics (volatility, Sharpe, Sortino)\n"
159
+ response += "πŸ“ˆ Technical indicators (RSI, ATR, EMA, Bollinger)\n"
160
+ response += "πŸ’° Position sizing and trade plan\n"
161
+ response += "🎯 Stop-loss and take-profit levels\n"
162
+ response += "πŸ€– AI-powered trading insights\n"
163
+
164
+ elif base_command == "/status":
165
  response = "βœ… <b>Bot Status: Online</b>\n\n"
166
  response += "πŸ”§ System: Running on HuggingFace Spaces\n"
167
  response += "🌐 Proxy: Google Apps Script\n"
168
  response += "πŸ“Š Status: All systems operational"
169
 
170
+ elif base_command == "/news":
171
  await self.news_feed_analysing(chat_id, command, user_name)
172
  return
173
 
174
+ elif base_command == "/run":
175
  await self.news_feed_analysing_by_ticker(ticker="NVDA", chat_id=chat_id,
176
  text=None, user_name=user_name)
177
  return
178
 
179
+ elif base_command == "/pooling":
180
  await self.news_feed_pooling_by_ticker(ticker="NVDA", chat_id=chat_id,
181
  text=None, user_name=user_name)
182
  return
183
 
184
+ elif base_command == "/risk":
185
+ await self._handle_risk_command(chat_id, command_parts, user_name)
186
+ return
187
+
188
  else:
189
  response = f"❓ Unknown command: {command}\n\n"
190
  response += "Type /help to see available commands."
 
312
  except Exception as e:
313
  main_logger.error(f"Error in news_feed_analysing_by_ticker: {e}")
314
  await self.send_message_via_proxy(chat_id, f"Sorry, there was an error fetching news: {str(e)}")
315
+
316
+ async def get_risk_analysis(
317
+ self, ticker: str, chat_id: int, text: str | None, user_name: str
318
+ ) -> None:
319
+ await self.send_message_via_proxy(chat_id, f"Fetching latest financial data for ticker {ticker} ...")
320
+ analyzer = RiskAnalyzer(self.config.GEMINI_API_KEY)
321
+ try:
322
+ risk_analysis = await analyzer.analyze_risk(ticker)
323
+ if risk_analysis:
324
+ response = f"Risk analysis for {ticker}:\n\n{risk_analysis}"
325
+ else:
326
+ response = f"No risk analysis available for {ticker}."
327
+ except Exception as e:
328
+ main_logger.error(f"Error in get_risk_analysis: {e}")
329
+ response = f"Sorry, there was an error fetching risk analysis: {str(e)}"
330
+ await self.send_message_via_proxy(chat_id, response)
331
+
332
+ async def _handle_risk_command(self, chat_id: int, command_parts: list[str],
333
+ user_name: str) -> None:
334
+ """Handle risk analysis command"""
335
+ try:
336
+ risk_analyzer = RiskAnalyzer(self.config.GEMINI_API_KEY)
337
+ if not risk_analyzer:
338
+ await self.send_message_via_proxy(
339
+ chat_id,
340
+ "❌ Risk analysis is currently unavailable. Please try again later."
341
+ )
342
+ return
343
+ if len(command_parts) < 2:
344
+ await self.send_message_via_proxy(
345
+ chat_id,
346
+ "❌ Please specify a ticker: /risk AAPL [capital]\n\n"
347
+ "Examples:\nβ€’ /risk AAPL\nβ€’ /risk TSLA 25000"
348
+ )
349
+ return
350
+ ticker = command_parts[1].upper()
351
+ await self.send_message_via_proxy(chat_id, f"Fetching latest financial data for ticker {ticker} ...")
352
+ try:
353
+ capital = float(command_parts[2]) if len(command_parts) > 2 else 10000
354
+ except (ValueError, IndexError):
355
+ capital = 10000
356
+
357
+ if capital < 1000:
358
+ await self.send_message_via_proxy(
359
+ chat_id,
360
+ "❌ Minimum capital is $1,000"
361
+ )
362
+ return
363
+
364
+ # Send loading message
365
+ loading_message = f"⏳ Analyzing {ticker} with ${capital:,.0f} capital...\n\n"
366
+ loading_message += "πŸ“Š Fetching market data...\n"
367
+ loading_message += "πŸ”’ Calculating risk metrics...\n"
368
+ loading_message += "πŸ“ˆ Analyzing technical indicators...\n"
369
+ loading_message += "πŸ’Ό Generating trade plan..."
370
+
371
+ await self.send_message_via_proxy(chat_id, loading_message)
372
+
373
+ # Perform analysis
374
+ risk_data = await risk_analyzer.analyze_risks(ticker, capital)
375
+
376
+ if not risk_data['success']:
377
+ await self.send_message_via_proxy(
378
+ chat_id,
379
+ f"❌ Analysis failed for {ticker}: {risk_data['error']}"
380
+ )
381
+ return
382
+ # Format and send main results
383
+ result_text = self._format_risk_analysis_results(risk_data)
384
+ await self.send_message_via_proxy(chat_id, result_text)
385
+
386
+ # Generate and send AI explanation
387
+ ai_loading = "πŸ€– Generating AI analysis..."
388
+ await self.send_message_via_proxy(chat_id, ai_loading)
389
+
390
+ explanation = await risk_analyzer.generate_explanation(risk_data)
391
+ ai_response = f"πŸ€– <b>AI Trading Analysis:</b>\n\n{explanation}"
392
+
393
+ await self.send_message_via_proxy(chat_id, ai_response)
394
+
395
+ except Exception as e:
396
+ main_logger.error(f"Error in risk command handler: {e}")
397
+ await self.send_message_via_proxy(
398
+ chat_id,
399
+ f"❌ An error occurred during analysis: {str(e)}"
400
+ )
401
+
402
+ def _format_risk_analysis_results(self, data: dict[str, Any]) -> str:
403
+ """Format comprehensive risk analysis results"""
404
+ try:
405
+ basic = data['basic_metrics']
406
+ tech = data['technical_indicators']
407
+ trend = data['trend_analysis']
408
+ position = data['position_sizing']
409
+ rr = data['risk_reward']
410
+
411
+ change_emoji = "πŸ“ˆ" if data['price_change_pct'] >= 0 else "πŸ“‰"
412
+
413
+ # RSI signals
414
+ rsi_value = tech['rsi']
415
+ if rsi_value > 70:
416
+ rsi_emoji = "πŸ”΄"
417
+ rsi_signal = "Overbought"
418
+ elif rsi_value < 30:
419
+ rsi_emoji = "🟒"
420
+ rsi_signal = "Oversold"
421
+ else:
422
+ rsi_emoji = "🟑"
423
+ rsi_signal = "Neutral"
424
+
425
+ # Volume signal
426
+ vol_emoji = "πŸ”₯" if tech['volume_ratio'] > 1.5 else "πŸ“Š"
427
+
428
+ # Risk level based on volatility
429
+ vol_pct = basic['volatility'] * 100
430
+ if vol_pct < 20:
431
+ risk_level = "🟒 Low"
432
+ elif vol_pct < 40:
433
+ risk_level = "🟑 Medium"
434
+ else:
435
+ risk_level = "πŸ”΄ High"
436
+
437
+ return f"""
438
+ πŸ“Š <b>Risk Analysis: {data['ticker']}</b>
439
+
440
+ πŸ’° <b>Current Price:</b> ${data['current_price']:.2f} ({data['price_change_pct']:+.2f}%) {change_emoji}
441
+
442
+ 🎯 <b>Risk Metrics:</b>
443
+ β€’ Volatility: {vol_pct:.1f}% ({risk_level})
444
+ β€’ Sharpe Ratio: {basic['sharpe_ratio']:.2f}
445
+ β€’ Sortino Ratio: {basic['sortino_ratio']:.2f}
446
+ β€’ VaR (5%): {basic['var_5'] * 100:.1f}%
447
+ β€’ Max Drawdown: {basic['max_drawdown'] * 100:.1f}%
448
+ β€’ Beta: {basic['beta']:.2f}
449
+
450
+ πŸ“ˆ <b>Technical Analysis:</b>
451
+ β€’ Trend: <b>{trend['trend']}</b>
452
+ β€’ RSI: {rsi_value:.0f} {rsi_emoji} ({rsi_signal})
453
+ β€’ ATR: ${tech['atr']:.2f}
454
+ β€’ Volume: {tech['volume_ratio']:.1f}x avg {vol_emoji}
455
+ β€’ BB Position: {trend['bb_position']}
456
+
457
+ πŸ’Ό <b>Trading Plan:</b>
458
+ β€’ Position Size: <b>{position['recommended_shares']} shares</b>
459
+ β€’ Investment: ${position['position_value']:,.0f}
460
+ β€’ Stop Loss: ${position['stop_loss_price']:.2f}
461
+ β€’ Take Profit 1: ${rr['take_profit_1']:.2f} (R/R 2:1)
462
+ β€’ Take Profit 2: ${rr['take_profit_2']:.2f} (R/R 3:1)
463
+ β€’ Risk Amount: ${position['actual_risk_usd']:.0f} ({position['actual_risk_pct']:.1f}%)
464
+
465
+ πŸ“Š <b>Moving Averages:</b>
466
+ β€’ EMA 20: ${tech['ema_20']:.2f}
467
+ β€’ EMA 50: ${tech['ema_50']:.2f}
468
+ β€’ EMA 200: ${tech['ema_200']:.2f}
469
+ """
470
+ except Exception as e:
471
+ main_logger.error(f"Error formatting risk results: {e}")
472
+ return f"❌ Error formatting analysis results: {str(e)}"