Dmitry Beresnev
commited on
Commit
·
a8327d8
1
Parent(s):
919a427
fix async fundamental analyzer
Browse files
src/core/fundamental_analysis/async_fundamental_analyzer.py
CHANGED
|
@@ -2,7 +2,6 @@ import asyncio
|
|
| 2 |
from typing import Dict, Any, List, Optional
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
-
import yfinance as yf
|
| 6 |
|
| 7 |
from src.core.fundamental_analysis.core_models import TickerData, FinancialMetrics, DCFResult
|
| 8 |
from src.core.fundamental_analysis.async_data_fetcher import AsyncDataFetcher
|
|
@@ -15,59 +14,66 @@ from src.core.fundamental_analysis.financial_utils import FinancialUtils
|
|
| 15 |
|
| 16 |
|
| 17 |
class AsyncFundamentalAnalyzer:
|
| 18 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
def __init__(self, ticker: str, max_workers: int = 5):
|
| 21 |
self.ticker = ticker.upper()
|
|
|
|
| 22 |
self.data_fetcher = AsyncDataFetcher(max_workers=max_workers)
|
| 23 |
self.dcf_calculator = DCFCalculator()
|
| 24 |
self.report_generator = ReportGenerator()
|
| 25 |
self.peer_comparison = PeerComparison(self.data_fetcher)
|
| 26 |
-
|
| 27 |
-
# Cache for ticker data
|
| 28 |
self._ticker_data: Optional[TickerData] = None
|
| 29 |
|
| 30 |
async def _ensure_ticker_data(self) -> TickerData:
|
| 31 |
-
"""
|
| 32 |
if self._ticker_data is None:
|
| 33 |
self._ticker_data = await self.data_fetcher.fetch_ticker_data(self.ticker)
|
| 34 |
return self._ticker_data
|
| 35 |
|
| 36 |
async def calculate_metrics(self) -> FinancialMetrics:
|
| 37 |
-
"""
|
| 38 |
ticker_data = await self._ensure_ticker_data()
|
| 39 |
data_extractor = DataExtractor(ticker_data)
|
| 40 |
metrics_calculator = MetricsCalculator(data_extractor)
|
| 41 |
return await metrics_calculator.calculate_all_metrics()
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
"""
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
growth_rate=growth_rate,
|
| 50 |
discount_rate=discount_rate,
|
| 51 |
projection_years=projection_years,
|
| 52 |
-
shares_outstanding=shares_outstanding
|
| 53 |
)
|
| 54 |
|
| 55 |
async def compare_with_peers(self, sort_by: str = "P/E") -> pd.DataFrame:
|
| 56 |
-
"""
|
| 57 |
return await self.peer_comparison.compare_with_mag7(self.ticker, sort_by)
|
| 58 |
|
| 59 |
async def generate_report(self, sort_by: str = "P/E", dcf_growth: float = 0.05,
|
| 60 |
dcf_discount: float = 0.10, dcf_years: int = 5) -> str:
|
| 61 |
-
"""
|
| 62 |
-
# Run
|
| 63 |
metrics_task = self.calculate_metrics()
|
| 64 |
peer_comparison_task = self.compare_with_peers(sort_by=sort_by)
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
metrics = await metrics_task
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
|
|
|
|
| 71 |
base_fcf=metrics.free_cash_flow,
|
| 72 |
growth_rate=dcf_growth,
|
| 73 |
discount_rate=dcf_discount,
|
|
@@ -75,8 +81,6 @@ class AsyncFundamentalAnalyzer:
|
|
| 75 |
shares_outstanding=metrics.shares_outstanding
|
| 76 |
)
|
| 77 |
|
| 78 |
-
dcf_result, peer_comparison = await asyncio.gather(dcf_task, peer_comparison_task)
|
| 79 |
-
|
| 80 |
return await self.report_generator.generate_telegram_report(
|
| 81 |
ticker=self.ticker,
|
| 82 |
metrics=metrics,
|
|
@@ -85,844 +89,79 @@ class AsyncFundamentalAnalyzer:
|
|
| 85 |
sort_by=sort_by
|
| 86 |
)
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
| 92 |
|
|
|
|
| 93 |
results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 94 |
|
| 95 |
reports = {}
|
| 96 |
-
for
|
| 97 |
if isinstance(result, Exception):
|
| 98 |
-
reports[
|
| 99 |
else:
|
| 100 |
-
reports[
|
| 101 |
-
|
| 102 |
return reports
|
| 103 |
|
| 104 |
async def __aenter__(self):
|
| 105 |
-
"""Async context manager entry"""
|
|
|
|
| 106 |
return self
|
| 107 |
|
| 108 |
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
| 109 |
-
"""Async context manager exit
|
| 110 |
-
|
| 111 |
-
|
| 112 |
|
|
|
|
| 113 |
|
| 114 |
-
# Utility functions for easier usage
|
| 115 |
async def analyze_ticker(ticker: str, **kwargs) -> str:
|
| 116 |
-
"""Convenience function to analyze a single ticker"""
|
| 117 |
async with AsyncFundamentalAnalyzer(ticker) as analyzer:
|
| 118 |
return await analyzer.generate_report(**kwargs)
|
| 119 |
|
| 120 |
|
| 121 |
-
async def analyze_multiple_tickers(tickers: List[str], **kwargs) -> Dict[str, str]:
|
| 122 |
-
"""Convenience function to analyze multiple tickers concurrently"""
|
| 123 |
-
|
| 124 |
-
async def analyze_single(ticker):
|
| 125 |
-
async with AsyncFundamentalAnalyzer(ticker) as analyzer:
|
| 126 |
-
return await analyzer.generate_report(**kwargs)
|
| 127 |
-
|
| 128 |
-
tasks = [analyze_single(ticker) for ticker in tickers]
|
| 129 |
-
results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 130 |
-
|
| 131 |
-
reports = {}
|
| 132 |
-
for i, result in enumerate(results):
|
| 133 |
-
if isinstance(result, Exception):
|
| 134 |
-
reports[tickers[i]] = f"Error analyzing {tickers[i]}: {str(result)}"
|
| 135 |
-
else:
|
| 136 |
-
reports[tickers[i]] = result
|
| 137 |
-
|
| 138 |
-
return reports
|
| 139 |
-
|
| 140 |
-
|
| 141 |
async def quick_comparison(tickers: List[str], sort_by: str = "P/E") -> pd.DataFrame:
|
| 142 |
-
"""
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
ticker_data_dict = await data_fetcher.fetch_multiple_tickers(tickers)
|
| 148 |
-
|
| 149 |
-
rows: List[Dict[str, Any]] = []
|
| 150 |
-
utils = FinancialUtils()
|
| 151 |
-
|
| 152 |
-
for ticker in tickers:
|
| 153 |
-
if ticker not in ticker_data_dict:
|
| 154 |
-
continue
|
| 155 |
|
|
|
|
| 156 |
try:
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
book_value = info.get("bookValue")
|
| 163 |
-
market_cap = info.get("marketCap")
|
| 164 |
-
cash = info.get("totalCash")
|
| 165 |
-
debt = info.get("totalDebt")
|
| 166 |
-
ebitda = info.get("ebitda")
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
ev = (market_cap or 0) + (debt or 0) - (cash or 0) if market_cap is not None else None
|
| 171 |
-
ev_ebitda = utils.safe_divide(ev, ebitda)
|
| 172 |
|
|
|
|
|
|
|
| 173 |
rows.append({
|
| 174 |
"Ticker": ticker,
|
| 175 |
-
"Price": price,
|
| 176 |
-
"Market Cap": market_cap,
|
| 177 |
-
"P/E":
|
| 178 |
-
"P/B":
|
| 179 |
-
"EV/EBITDA": ev_ebitda,
|
|
|
|
|
|
|
| 180 |
})
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
|
| 185 |
df = pd.DataFrame(rows)
|
| 186 |
if sort_by in df.columns:
|
| 187 |
-
df = df.sort_values(by=sort_by, na_position='last')
|
| 188 |
-
|
| 189 |
-
return df.reset_index(drop=True)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
'''
|
| 196 |
-
|
| 197 |
-
"""
|
| 198 |
-
Refactored asynchronous comprehensive fundamental analysis module with human interpretations
|
| 199 |
-
|
| 200 |
-
Key fixes made:
|
| 201 |
-
- PEG calculation fixed (handles decimals vs percentages and avoids incorrect *100 multiplication)
|
| 202 |
-
- Free Cash Flow calculation uses absolute CAPEX sign correctly
|
| 203 |
-
- AsyncDataFetcher implements async context manager and optional concurrency semaphore
|
| 204 |
-
- Minor robustness improvements in extractors and metric calculator
|
| 205 |
-
- Removed unused imports
|
| 206 |
-
|
| 207 |
-
Dependencies: yfinance, pandas, numpy, aiohttp (optional), asyncio
|
| 208 |
-
"""
|
| 209 |
-
|
| 210 |
-
from __future__ import annotations
|
| 211 |
-
import asyncio
|
| 212 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 213 |
-
from typing import Dict, Any, List, Optional
|
| 214 |
-
from dataclasses import dataclass
|
| 215 |
-
from enum import Enum
|
| 216 |
-
|
| 217 |
-
import numpy as np
|
| 218 |
-
import pandas as pd
|
| 219 |
-
import yfinance as yf
|
| 220 |
-
|
| 221 |
-
# Constants
|
| 222 |
-
MAG7_TICKERS = ["AAPL", "MSFT", "GOOGL", "AMZN", "NVDA", "META", "TSLA"]
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
class MetricCategory(Enum):
|
| 226 |
-
"""Categories for financial metrics"""
|
| 227 |
-
VALUATION = "valuation"
|
| 228 |
-
PROFITABILITY = "profitability"
|
| 229 |
-
LEVERAGE = "leverage"
|
| 230 |
-
CASH_FLOW = "cash_flow"
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
@dataclass
|
| 234 |
-
class FinancialMetrics:
|
| 235 |
-
"""Container for calculated financial metrics"""
|
| 236 |
-
price: Optional[float] = None
|
| 237 |
-
market_cap: Optional[float] = None
|
| 238 |
-
shares_outstanding: Optional[float] = None
|
| 239 |
-
pe_ratio: Optional[float] = None
|
| 240 |
-
pb_ratio: Optional[float] = None
|
| 241 |
-
peg_ratio: Optional[float] = None
|
| 242 |
-
ev_ebitda: Optional[float] = None
|
| 243 |
-
ps_ratio: Optional[float] = None
|
| 244 |
-
pcf_ratio: Optional[float] = None
|
| 245 |
-
ev_sales: Optional[float] = None
|
| 246 |
-
dividend_yield: Optional[float] = None
|
| 247 |
-
roe: Optional[float] = None
|
| 248 |
-
roa: Optional[float] = None
|
| 249 |
-
roic: Optional[float] = None
|
| 250 |
-
roce: Optional[float] = None
|
| 251 |
-
gross_margin: Optional[float] = None
|
| 252 |
-
operating_margin: Optional[float] = None
|
| 253 |
-
net_margin: Optional[float] = None
|
| 254 |
-
ebitda_margin: Optional[float] = None
|
| 255 |
-
current_ratio: Optional[float] = None
|
| 256 |
-
quick_ratio: Optional[float] = None
|
| 257 |
-
cash_ratio: Optional[float] = None
|
| 258 |
-
ocf_to_current_liabilities: Optional[float] = None
|
| 259 |
-
asset_turnover: Optional[float] = None
|
| 260 |
-
inventory_turnover: Optional[float] = None
|
| 261 |
-
receivables_turnover: Optional[float] = None
|
| 262 |
-
days_sales_outstanding: Optional[float] = None
|
| 263 |
-
debt_to_equity: Optional[float] = None
|
| 264 |
-
debt_to_assets: Optional[float] = None
|
| 265 |
-
equity_ratio: Optional[float] = None
|
| 266 |
-
debt_to_capital: Optional[float] = None
|
| 267 |
-
interest_coverage: Optional[float] = None
|
| 268 |
-
operating_cash_flow: Optional[float] = None
|
| 269 |
-
capex: Optional[float] = None
|
| 270 |
-
free_cash_flow: Optional[float] = None
|
| 271 |
-
fcf_yield: Optional[float] = None
|
| 272 |
-
quality_of_earnings: Optional[float] = None
|
| 273 |
-
revenue_growth: Optional[float] = None
|
| 274 |
-
earnings_growth: Optional[float] = None
|
| 275 |
-
book_value_growth: Optional[float] = None
|
| 276 |
-
altman_z_score: Optional[float] = None
|
| 277 |
-
piotroski_score: Optional[int] = None
|
| 278 |
-
enterprise_value: Optional[float] = None
|
| 279 |
-
book_value: Optional[float] = None
|
| 280 |
-
eps: Optional[float] = None
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
@dataclass
|
| 284 |
-
class DCFResult:
|
| 285 |
-
fair_value_per_share: Optional[float] = None
|
| 286 |
-
intrinsic_value: Optional[float] = None
|
| 287 |
-
upside_downside: Optional[float] = None
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
@dataclass
|
| 291 |
-
class TickerData:
|
| 292 |
-
ticker: str
|
| 293 |
-
info: Dict[str, Any]
|
| 294 |
-
financials: pd.DataFrame
|
| 295 |
-
balance_sheet: pd.DataFrame
|
| 296 |
-
cashflow: pd.DataFrame
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
class FinancialUtils:
|
| 300 |
-
@staticmethod
|
| 301 |
-
def safe_divide(numerator: Optional[float], denominator: Optional[float]) -> Optional[float]:
|
| 302 |
-
try:
|
| 303 |
-
if numerator is None or denominator is None:
|
| 304 |
-
return None
|
| 305 |
-
if isinstance(numerator, (int, float, np.number)) and isinstance(denominator, (int, float, np.number)):
|
| 306 |
-
if denominator == 0:
|
| 307 |
-
return None
|
| 308 |
-
return float(numerator) / float(denominator)
|
| 309 |
-
except Exception:
|
| 310 |
-
return None
|
| 311 |
-
return None
|
| 312 |
-
|
| 313 |
-
@staticmethod
|
| 314 |
-
def format_number(value: Optional[float], decimal_places: int = 2, suffix: str = "") -> str:
|
| 315 |
-
if value is None or (isinstance(value, float) and (np.isnan(value) or np.isinf(value))):
|
| 316 |
-
return "—"
|
| 317 |
-
try:
|
| 318 |
-
abs_value = abs(value)
|
| 319 |
-
if abs_value >= 1_000_000_000_000:
|
| 320 |
-
return f"{value/1_000_000_000_000:.{decimal_places}f}T{suffix}"
|
| 321 |
-
elif abs_value >= 1_000_000_000:
|
| 322 |
-
return f"{value/1_000_000_000:.{decimal_places}f}B{suffix}"
|
| 323 |
-
elif abs_value >= 1_000_000:
|
| 324 |
-
return f"{value/1_000_000:.{decimal_places}f}M{suffix}"
|
| 325 |
-
elif abs_value >= 1_000:
|
| 326 |
-
return f"{value/1_000:.{decimal_places}f}K{suffix}"
|
| 327 |
-
else:
|
| 328 |
-
return f"{value:.{decimal_places}f}{suffix}"
|
| 329 |
-
except Exception:
|
| 330 |
-
return "—"
|
| 331 |
-
|
| 332 |
-
@staticmethod
|
| 333 |
-
def format_percentage(value: Optional[float], decimal_places: int = 2) -> str:
|
| 334 |
-
if value is None or (isinstance(value, float) and (np.isnan(value) or np.isinf(value))):
|
| 335 |
-
return "—"
|
| 336 |
-
try:
|
| 337 |
-
return f"{value*100:.{decimal_places}f}%"
|
| 338 |
-
except Exception:
|
| 339 |
-
return "—"
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
class MetricInterpreter:
|
| 343 |
-
# (unchanged for brevity) - keep existing interpret_* methods
|
| 344 |
-
@staticmethod
|
| 345 |
-
def interpret_pe_ratio(pe: Optional[float]) -> str:
|
| 346 |
-
if pe is None or pe <= 0:
|
| 347 |
-
return "No earnings or insufficient data"
|
| 348 |
-
elif pe < 10:
|
| 349 |
-
return "Cheap: market expects stagnation/risks"
|
| 350 |
-
elif pe < 20:
|
| 351 |
-
return "Fair valuation range"
|
| 352 |
-
elif pe < 35:
|
| 353 |
-
return "Premium: expects sustained growth"
|
| 354 |
-
else:
|
| 355 |
-
return "High premium: expects rapid growth or overheated"
|
| 356 |
-
|
| 357 |
-
@staticmethod
|
| 358 |
-
def interpret_pb_ratio(pb: Optional[float]) -> str:
|
| 359 |
-
if pb is None or pb <= 0:
|
| 360 |
-
return "No data or negative equity"
|
| 361 |
-
elif pb < 1:
|
| 362 |
-
return "Below book value: market expects problems"
|
| 363 |
-
elif pb < 3:
|
| 364 |
-
return "Moderate: within normal range"
|
| 365 |
-
elif pb < 6:
|
| 366 |
-
return "High: strong brand/margins/growth"
|
| 367 |
-
else:
|
| 368 |
-
return "Very high: strong growth expectations"
|
| 369 |
-
|
| 370 |
-
@staticmethod
|
| 371 |
-
def interpret_peg_ratio(peg: Optional[float]) -> str:
|
| 372 |
-
if peg is None or peg <= 0:
|
| 373 |
-
return "No growth data available"
|
| 374 |
-
elif peg < 0.8:
|
| 375 |
-
return "Cheap relative to growth"
|
| 376 |
-
elif peg <= 1.2:
|
| 377 |
-
return "Fair price relative to growth"
|
| 378 |
-
else:
|
| 379 |
-
return "Expensive relative to growth"
|
| 380 |
-
|
| 381 |
-
@staticmethod
|
| 382 |
-
def interpret_ps_ratio(ps: Optional[float]) -> str:
|
| 383 |
-
if ps is None or ps <= 0:
|
| 384 |
-
return "No data available"
|
| 385 |
-
elif ps < 2:
|
| 386 |
-
return "Reasonable sales multiple"
|
| 387 |
-
elif ps < 5:
|
| 388 |
-
return "Moderate sales premium"
|
| 389 |
-
else:
|
| 390 |
-
return "High sales premium"
|
| 391 |
-
|
| 392 |
-
@staticmethod
|
| 393 |
-
def interpret_ev_ebitda(val: Optional[float]) -> str:
|
| 394 |
-
if val is None or val <= 0:
|
| 395 |
-
return "No data available"
|
| 396 |
-
elif val < 6:
|
| 397 |
-
return "Cheap/questions about earnings quality"
|
| 398 |
-
elif val <= 12:
|
| 399 |
-
return "Normal range for mature businesses"
|
| 400 |
-
else:
|
| 401 |
-
return "High: market expects growth acceleration"
|
| 402 |
-
|
| 403 |
-
@staticmethod
|
| 404 |
-
def interpret_roe(roe: Optional[float]) -> str:
|
| 405 |
-
if roe is None or roe <= 0:
|
| 406 |
-
return "Low return on equity"
|
| 407 |
-
elif roe < 0.15:
|
| 408 |
-
return "Moderate efficiency"
|
| 409 |
-
elif roe < 0.4:
|
| 410 |
-
return "High efficiency"
|
| 411 |
-
else:
|
| 412 |
-
return "Very high: possible leverage effect"
|
| 413 |
-
|
| 414 |
-
@staticmethod
|
| 415 |
-
def interpret_roa(roa: Optional[float]) -> str:
|
| 416 |
-
if roa is None or roa <= 0:
|
| 417 |
-
return "Low asset efficiency"
|
| 418 |
-
elif roa < 0.05:
|
| 419 |
-
return "Moderate for capital-intensive industries"
|
| 420 |
-
elif roa < 0.12:
|
| 421 |
-
return "Good asset utilization"
|
| 422 |
-
else:
|
| 423 |
-
return "Excellent asset efficiency"
|
| 424 |
-
|
| 425 |
-
@staticmethod
|
| 426 |
-
def interpret_roic(roic: Optional[float]) -> str:
|
| 427 |
-
if roic is None or roic <= 0:
|
| 428 |
-
return "Low capital efficiency"
|
| 429 |
-
elif roic < 0.10:
|
| 430 |
-
return "Below cost of capital"
|
| 431 |
-
elif roic < 0.20:
|
| 432 |
-
return "Decent capital allocation"
|
| 433 |
-
else:
|
| 434 |
-
return "Excellent capital allocation"
|
| 435 |
-
|
| 436 |
-
@staticmethod
|
| 437 |
-
def interpret_current_ratio(ratio: Optional[float]) -> str:
|
| 438 |
-
if ratio is None or ratio <= 0:
|
| 439 |
-
return "Poor liquidity position"
|
| 440 |
-
elif ratio < 1:
|
| 441 |
-
return "Liquidity concerns"
|
| 442 |
-
elif ratio < 2:
|
| 443 |
-
return "Adequate liquidity"
|
| 444 |
-
else:
|
| 445 |
-
return "Strong liquidity position"
|
| 446 |
-
|
| 447 |
-
@staticmethod
|
| 448 |
-
def interpret_quick_ratio(ratio: Optional[float]) -> str:
|
| 449 |
-
if ratio is None or ratio <= 0:
|
| 450 |
-
return "Poor short-term liquidity"
|
| 451 |
-
elif ratio < 1:
|
| 452 |
-
return "Tight liquidity"
|
| 453 |
-
else:
|
| 454 |
-
return "Good short-term liquidity"
|
| 455 |
-
|
| 456 |
-
@staticmethod
|
| 457 |
-
def interpret_asset_turnover(turnover: Optional[float]) -> str:
|
| 458 |
-
if turnover is None or turnover <= 0:
|
| 459 |
-
return "Poor asset utilization"
|
| 460 |
-
elif turnover < 0.5:
|
| 461 |
-
return "Low asset efficiency"
|
| 462 |
-
elif turnover < 1.5:
|
| 463 |
-
return "Moderate asset efficiency"
|
| 464 |
-
else:
|
| 465 |
-
return "High asset efficiency"
|
| 466 |
-
|
| 467 |
-
@staticmethod
|
| 468 |
-
def interpret_margin(margin: Optional[float], margin_type: str) -> str:
|
| 469 |
-
if margin is None or margin < 0:
|
| 470 |
-
return f"Narrow/negative {margin_type} margin"
|
| 471 |
-
if margin_type == "gross":
|
| 472 |
-
if margin < 0.3:
|
| 473 |
-
return "Low gross margin"
|
| 474 |
-
elif margin < 0.6:
|
| 475 |
-
return "Healthy gross margin"
|
| 476 |
-
else:
|
| 477 |
-
return "Very high gross margin"
|
| 478 |
-
elif margin_type == "operating":
|
| 479 |
-
if margin < 0.1:
|
| 480 |
-
return "Low operating margin"
|
| 481 |
-
elif margin < 0.25:
|
| 482 |
-
return "Sustainable operating margin"
|
| 483 |
-
else:
|
| 484 |
-
return "High operating margin"
|
| 485 |
-
elif margin_type == "net":
|
| 486 |
-
if margin < 0.05:
|
| 487 |
-
return "Thin net margin"
|
| 488 |
-
elif margin < 0.15:
|
| 489 |
-
return "Normal net margin"
|
| 490 |
-
else:
|
| 491 |
-
return "High net margin"
|
| 492 |
-
elif margin_type == "ebitda":
|
| 493 |
-
if margin < 0.1:
|
| 494 |
-
return "Low EBITDA margin"
|
| 495 |
-
elif margin < 0.25:
|
| 496 |
-
return "Healthy EBITDA margin"
|
| 497 |
-
else:
|
| 498 |
-
return "High EBITDA margin"
|
| 499 |
-
return ""
|
| 500 |
-
|
| 501 |
-
@staticmethod
|
| 502 |
-
def interpret_debt_equity(de: Optional[float]) -> str:
|
| 503 |
-
if de is None or de < 0:
|
| 504 |
-
return "No data available"
|
| 505 |
-
elif de < 1:
|
| 506 |
-
return "Moderate debt load"
|
| 507 |
-
elif de < 2:
|
| 508 |
-
return "Elevated debt load"
|
| 509 |
-
else:
|
| 510 |
-
return "High/critical debt load"
|
| 511 |
-
|
| 512 |
-
@staticmethod
|
| 513 |
-
def interpret_debt_to_assets(dta: Optional[float]) -> str:
|
| 514 |
-
if dta is None or dta < 0:
|
| 515 |
-
return "No data available"
|
| 516 |
-
elif dta < 0.3:
|
| 517 |
-
return "Conservative debt level"
|
| 518 |
-
elif dta < 0.6:
|
| 519 |
-
return "Moderate debt level"
|
| 520 |
-
else:
|
| 521 |
-
return "High debt level"
|
| 522 |
-
|
| 523 |
-
@staticmethod
|
| 524 |
-
def interpret_interest_coverage(icr: Optional[float]) -> str:
|
| 525 |
-
if icr is None or icr <= 0:
|
| 526 |
-
return "No/negative interest coverage"
|
| 527 |
-
elif icr < 1.5:
|
| 528 |
-
return "Risky: low coverage"
|
| 529 |
-
elif icr < 3:
|
| 530 |
-
return "Moderate coverage"
|
| 531 |
-
else:
|
| 532 |
-
return "Comfortable coverage"
|
| 533 |
-
|
| 534 |
-
@staticmethod
|
| 535 |
-
def interpret_fcf_yield(yield_val: Optional[float]) -> str:
|
| 536 |
-
if yield_val is None or yield_val <= 0:
|
| 537 |
-
return "Low/negative FCF yield"
|
| 538 |
-
elif yield_val < 0.02:
|
| 539 |
-
return "Low FCF yield"
|
| 540 |
-
elif yield_val < 0.05:
|
| 541 |
-
return "Moderate FCF yield"
|
| 542 |
-
elif yield_val < 0.08:
|
| 543 |
-
return "Good FCF yield"
|
| 544 |
-
else:
|
| 545 |
-
return "High FCF yield"
|
| 546 |
-
|
| 547 |
-
@staticmethod
|
| 548 |
-
def interpret_quality_of_earnings(qoe: Optional[float]) -> str:
|
| 549 |
-
if qoe is None:
|
| 550 |
-
return "No data available"
|
| 551 |
-
elif qoe < 0.8:
|
| 552 |
-
return "Poor earnings quality"
|
| 553 |
-
elif qoe < 1.2:
|
| 554 |
-
return "Good earnings quality"
|
| 555 |
-
else:
|
| 556 |
-
return "Excellent earnings quality"
|
| 557 |
-
|
| 558 |
-
@staticmethod
|
| 559 |
-
def interpret_altman_z_score(z_score: Optional[float]) -> str:
|
| 560 |
-
if z_score is None:
|
| 561 |
-
return "No data available"
|
| 562 |
-
elif z_score < 1.8:
|
| 563 |
-
return "High bankruptcy risk"
|
| 564 |
-
elif z_score < 3.0:
|
| 565 |
-
return "Moderate risk zone"
|
| 566 |
-
else:
|
| 567 |
-
return "Safe zone"
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
class AsyncDataFetcher:
|
| 571 |
-
"""Async yfinance fetcher with optional concurrency throttling and context manager support."""
|
| 572 |
-
|
| 573 |
-
def __init__(self, max_workers: int = 5, max_concurrency: int | None = None):
|
| 574 |
-
self.max_workers = max_workers
|
| 575 |
-
self.executor: Optional[ThreadPoolExecutor] = None
|
| 576 |
-
self.semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency is not None else None
|
| 577 |
-
|
| 578 |
-
async def __aenter__(self):
|
| 579 |
-
self.executor = ThreadPoolExecutor(max_workers=self.max_workers)
|
| 580 |
-
return self
|
| 581 |
-
|
| 582 |
-
async def __aexit__(self, exc_type, exc, tb):
|
| 583 |
-
if self.executor:
|
| 584 |
-
self.executor.shutdown(wait=False)
|
| 585 |
-
self.executor = None
|
| 586 |
-
|
| 587 |
-
async def fetch_ticker_data(self, ticker: str) -> TickerData:
|
| 588 |
-
loop = asyncio.get_event_loop()
|
| 589 |
-
|
| 590 |
-
async def _maybe_wait():
|
| 591 |
-
if self.semaphore:
|
| 592 |
-
await self.semaphore.acquire()
|
| 593 |
-
|
| 594 |
-
async def _maybe_release():
|
| 595 |
-
if self.semaphore:
|
| 596 |
-
self.semaphore.release()
|
| 597 |
-
|
| 598 |
-
await _maybe_wait()
|
| 599 |
-
|
| 600 |
-
def _fetch_data():
|
| 601 |
-
try:
|
| 602 |
-
ticker_obj = yf.Ticker(ticker)
|
| 603 |
-
return TickerData(
|
| 604 |
-
ticker=ticker,
|
| 605 |
-
info=getattr(ticker_obj, "info", {}) or {},
|
| 606 |
-
financials=getattr(ticker_obj, "financials", pd.DataFrame()),
|
| 607 |
-
balance_sheet=getattr(ticker_obj, "balance_sheet", pd.DataFrame()),
|
| 608 |
-
cashflow=getattr(ticker_obj, "cashflow", pd.DataFrame())
|
| 609 |
-
)
|
| 610 |
-
except Exception as e:
|
| 611 |
-
# keep errors quiet in production; consider logging
|
| 612 |
-
return TickerData(ticker=ticker, info={}, financials=pd.DataFrame(), balance_sheet=pd.DataFrame(), cashflow=pd.DataFrame())
|
| 613 |
-
|
| 614 |
-
try:
|
| 615 |
-
result = await loop.run_in_executor(self.executor, _fetch_data)
|
| 616 |
-
finally:
|
| 617 |
-
await _maybe_release()
|
| 618 |
-
|
| 619 |
-
return result
|
| 620 |
-
|
| 621 |
-
async def fetch_multiple_tickers(self, tickers: List[str]) -> Dict[str, TickerData]:
|
| 622 |
-
tasks = [self.fetch_ticker_data(t) for t in tickers]
|
| 623 |
-
results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 624 |
-
out: Dict[str, TickerData] = {}
|
| 625 |
-
for r in results:
|
| 626 |
-
if isinstance(r, Exception):
|
| 627 |
-
continue
|
| 628 |
-
out[r.ticker] = r
|
| 629 |
-
return out
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
class DataExtractor:
|
| 633 |
-
def __init__(self, ticker_data: TickerData):
|
| 634 |
-
self.ticker_data = ticker_data
|
| 635 |
-
self.info = ticker_data.info or {}
|
| 636 |
-
self.financials = ticker_data.financials or pd.DataFrame()
|
| 637 |
-
self.balance_sheet = ticker_data.balance_sheet or pd.DataFrame()
|
| 638 |
-
self.cashflow = ticker_data.cashflow or pd.DataFrame()
|
| 639 |
-
|
| 640 |
-
def _first_non_na_from_index(self, df: pd.DataFrame, keys: List[str]) -> Optional[float]:
|
| 641 |
-
for k in keys:
|
| 642 |
-
if k in df.index:
|
| 643 |
-
vals = df.loc[k].dropna()
|
| 644 |
-
if len(vals) > 0:
|
| 645 |
-
try:
|
| 646 |
-
return float(vals.iloc[0])
|
| 647 |
-
except Exception:
|
| 648 |
-
continue
|
| 649 |
-
return None
|
| 650 |
-
|
| 651 |
-
def get_balance_sheet_item(self, item: str, fallback_names: List[str] | None = None) -> Optional[float]:
|
| 652 |
-
if fallback_names is None:
|
| 653 |
-
fallback_names = []
|
| 654 |
-
keys = [item] + fallback_names
|
| 655 |
-
try:
|
| 656 |
-
v = self._first_non_na_from_index(self.balance_sheet, keys)
|
| 657 |
-
if v is not None:
|
| 658 |
-
return v
|
| 659 |
-
except Exception:
|
| 660 |
-
pass
|
| 661 |
-
# fallback to info dict
|
| 662 |
-
val = self.info.get(item)
|
| 663 |
-
return float(val) if val is not None else None
|
| 664 |
-
|
| 665 |
-
def get_financial_item(self, item: str, fallback_names: List[str] | None = None) -> Optional[float]:
|
| 666 |
-
if fallback_names is None:
|
| 667 |
-
fallback_names = []
|
| 668 |
-
keys = [item] + fallback_names
|
| 669 |
-
try:
|
| 670 |
-
v = self._first_non_na_from_index(self.financials, keys)
|
| 671 |
-
if v is not None:
|
| 672 |
-
return v
|
| 673 |
-
except Exception:
|
| 674 |
-
pass
|
| 675 |
-
val = self.info.get(item)
|
| 676 |
-
return float(val) if val is not None else None
|
| 677 |
-
|
| 678 |
-
def get_cashflow_item(self, item: str, fallback_names: List[str] | None = None) -> Optional[float]:
|
| 679 |
-
if fallback_names is None:
|
| 680 |
-
fallback_names = []
|
| 681 |
-
keys = [item] + fallback_names
|
| 682 |
-
try:
|
| 683 |
-
v = self._first_non_na_from_index(self.cashflow, keys)
|
| 684 |
-
if v is not None:
|
| 685 |
-
return v
|
| 686 |
-
except Exception:
|
| 687 |
-
pass
|
| 688 |
-
val = self.info.get(item)
|
| 689 |
-
return float(val) if val is not None else None
|
| 690 |
-
|
| 691 |
-
def get_historical_data(self, item: str, periods: int) -> List[Optional[float]]:
|
| 692 |
-
try:
|
| 693 |
-
if item in self.financials.index and not self.financials.empty:
|
| 694 |
-
values = self.financials.loc[item].dropna()
|
| 695 |
-
return [float(values.iloc[i]) if i < len(values) else None for i in range(min(periods, len(values)))]
|
| 696 |
-
except Exception:
|
| 697 |
-
pass
|
| 698 |
-
return [None] * periods
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
class DCFCalculator:
|
| 702 |
-
@staticmethod
|
| 703 |
-
async def calculate_dcf(base_fcf: Optional[float],
|
| 704 |
-
growth_rate: float = 0.05,
|
| 705 |
-
discount_rate: float = 0.10,
|
| 706 |
-
projection_years: int = 5,
|
| 707 |
-
shares_outstanding: Optional[float] = None) -> DCFResult:
|
| 708 |
-
if base_fcf is None or base_fcf <= 0:
|
| 709 |
-
return DCFResult()
|
| 710 |
-
loop = asyncio.get_event_loop()
|
| 711 |
-
|
| 712 |
-
def _calculate():
|
| 713 |
-
future_fcfs = [base_fcf * ((1 + growth_rate) ** t) for t in range(1, projection_years + 1)]
|
| 714 |
-
pv_fcfs = [fcf / ((1 + discount_rate) ** t) for t, fcf in enumerate(future_fcfs, 1)]
|
| 715 |
-
|
| 716 |
-
if discount_rate > growth_rate:
|
| 717 |
-
terminal_value = future_fcfs[-1] * (1 + growth_rate) / (discount_rate - growth_rate)
|
| 718 |
-
pv_terminal = terminal_value / ((1 + discount_rate) ** projection_years)
|
| 719 |
-
else:
|
| 720 |
-
pv_terminal = future_fcfs[-1] / ((1 + discount_rate) ** projection_years)
|
| 721 |
-
|
| 722 |
-
intrinsic_value = sum(pv_fcfs) + pv_terminal
|
| 723 |
-
fair_value_per_share = None
|
| 724 |
-
if shares_outstanding and shares_outstanding > 0:
|
| 725 |
-
fair_value_per_share = intrinsic_value / shares_outstanding
|
| 726 |
-
return DCFResult(fair_value_per_share=fair_value_per_share, intrinsic_value=intrinsic_value)
|
| 727 |
-
|
| 728 |
-
return await loop.run_in_executor(None, _calculate)
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
class MetricsCalculator:
|
| 732 |
-
def __init__(self, data_extractor: DataExtractor):
|
| 733 |
-
self.extractor = data_extractor
|
| 734 |
-
self.utils = FinancialUtils()
|
| 735 |
-
|
| 736 |
-
async def calculate_all_metrics(self) -> FinancialMetrics:
|
| 737 |
-
loop = asyncio.get_event_loop()
|
| 738 |
-
|
| 739 |
-
def _calculate():
|
| 740 |
-
info = self.extractor.info or {}
|
| 741 |
-
|
| 742 |
-
price = info.get("currentPrice") or info.get("regularMarketPrice") or info.get("previousClose")
|
| 743 |
-
market_cap = info.get("marketCap")
|
| 744 |
-
shares_out = info.get("sharesOutstanding") or info.get("impliedSharesOutstanding")
|
| 745 |
-
eps = info.get("trailingEps") or info.get("forwardEps")
|
| 746 |
-
book_value = info.get("bookValue")
|
| 747 |
-
|
| 748 |
-
net_income = (info.get("netIncomeToCommon") or self.extractor.get_financial_item("Net Income", ["Net Income Common Stockholders", "Net Income Available To Common Stockholders"]))
|
| 749 |
-
revenue = (info.get("totalRevenue") or self.extractor.get_financial_item("Total Revenue", ["Revenue", "Total Revenues"]))
|
| 750 |
-
ebitda = (info.get("ebitda") or self.extractor.get_financial_item("EBITDA", ["Ebitda"]))
|
| 751 |
-
ebit = (info.get("ebit") or self.extractor.get_financial_item("EBIT", ["Operating Income"]))
|
| 752 |
-
|
| 753 |
-
equity = self.extractor.get_balance_sheet_item("Total Stockholder Equity", ["Stockholders Equity", "Total Equity", "Shareholders Equity"])
|
| 754 |
-
assets = self.extractor.get_balance_sheet_item("Total Assets", ["Total Assets"])
|
| 755 |
-
current_assets = self.extractor.get_balance_sheet_item("Current Assets", ["Total Current Assets"])
|
| 756 |
-
current_liabilities = self.extractor.get_balance_sheet_item("Current Liabilities", ["Total Current Liabilities"])
|
| 757 |
-
|
| 758 |
-
cash = (self.extractor.get_balance_sheet_item("Cash", ["Cash And Cash Equivalents", "Cash and Short Term Investments"]) or info.get("totalCash"))
|
| 759 |
-
inventory = self.extractor.get_balance_sheet_item("Inventory", ["Inventories"])
|
| 760 |
-
accounts_receivable = self.extractor.get_balance_sheet_item("Accounts Receivable", ["Net Receivables", "Receivables"])
|
| 761 |
-
|
| 762 |
-
total_debt = (info.get("totalDebt") or self.extractor.get_balance_sheet_item("Total Debt", ["Long Term Debt", "Short Long Term Debt"]))
|
| 763 |
-
liabilities = self.extractor.get_balance_sheet_item("Total Liab", ["Total Liabilities Net Minority Interest"])
|
| 764 |
-
|
| 765 |
-
interest_expense = self.extractor.get_financial_item("Interest Expense", ["Interest Expense Non Operating"])
|
| 766 |
-
|
| 767 |
-
operating_cash_flow = self.extractor.get_cashflow_item("Total Cash From Operating Activities", ["Operating Cash Flow", "Cash From Operating Activities"])
|
| 768 |
-
capex = self.extractor.get_cashflow_item("Capital Expenditures", ["Capital Expenditure", "Purchase Of Property Plant Equipment"])
|
| 769 |
-
|
| 770 |
-
if capex is not None:
|
| 771 |
-
capex = abs(capex) # ensure capex treated as cash outflow magnitude
|
| 772 |
-
|
| 773 |
-
earnings_growth = info.get("earningsQuarterlyGrowth") or info.get("earningsGrowth")
|
| 774 |
-
revenue_growth = info.get("revenueGrowth")
|
| 775 |
-
|
| 776 |
-
historical_revenue = self.extractor.get_historical_data("Total Revenue", 2)
|
| 777 |
-
if len(historical_revenue) >= 2 and historical_revenue[0] and historical_revenue[1]:
|
| 778 |
-
hist_growth = (historical_revenue[0] - historical_revenue[1]) / abs(historical_revenue[1])
|
| 779 |
-
revenue_growth = revenue_growth or hist_growth
|
| 780 |
-
|
| 781 |
-
gross_margin = info.get("grossMargins")
|
| 782 |
-
operating_margin = info.get("operatingMargins")
|
| 783 |
-
profit_margins = info.get("profitMargins")
|
| 784 |
-
|
| 785 |
-
if revenue and revenue > 0:
|
| 786 |
-
if not operating_margin and ebit:
|
| 787 |
-
operating_margin = ebit / revenue
|
| 788 |
-
if not profit_margins and net_income:
|
| 789 |
-
profit_margins = net_income / revenue
|
| 790 |
-
|
| 791 |
-
dividend_yield = info.get("dividendYield")
|
| 792 |
-
|
| 793 |
-
enterprise_value = None
|
| 794 |
-
if market_cap is not None:
|
| 795 |
-
enterprise_value = market_cap + (total_debt or 0) - (cash or 0)
|
| 796 |
-
|
| 797 |
-
free_cash_flow = None
|
| 798 |
-
if operating_cash_flow is not None:
|
| 799 |
-
if capex is not None:
|
| 800 |
-
free_cash_flow = operating_cash_flow - capex
|
| 801 |
-
else:
|
| 802 |
-
free_cash_flow = operating_cash_flow
|
| 803 |
-
|
| 804 |
-
pe_ratio = self.utils.safe_divide(price, eps)
|
| 805 |
-
pb_ratio = self.utils.safe_divide(price, book_value)
|
| 806 |
-
|
| 807 |
-
# PEG ratio: ensure earnings_growth is in decimal (e.g., 0.12 for 12%)
|
| 808 |
-
peg_ratio = None
|
| 809 |
-
if pe_ratio is not None and earnings_growth is not None:
|
| 810 |
-
try:
|
| 811 |
-
g = float(earnings_growth)
|
| 812 |
-
# If Yahoo returns large numbers like 12 for 12%, convert
|
| 813 |
-
if abs(g) > 1:
|
| 814 |
-
g = g / 100.0
|
| 815 |
-
# ignore extremely small growth rates that would distort PEG
|
| 816 |
-
if abs(g) >= 0.01:
|
| 817 |
-
peg_ratio = self.utils.safe_divide(pe_ratio, g)
|
| 818 |
-
except Exception:
|
| 819 |
-
peg_ratio = None
|
| 820 |
-
|
| 821 |
-
ps_ratio = self.utils.safe_divide(market_cap, revenue)
|
| 822 |
-
pcf_ratio = self.utils.safe_divide(market_cap, operating_cash_flow)
|
| 823 |
-
ev_ebitda = self.utils.safe_divide(enterprise_value, ebitda)
|
| 824 |
-
ev_sales = self.utils.safe_divide(enterprise_value, revenue)
|
| 825 |
-
|
| 826 |
-
roe = self.utils.safe_divide(net_income, equity)
|
| 827 |
-
roa = self.utils.safe_divide(net_income, assets)
|
| 828 |
-
|
| 829 |
-
invested_capital = (equity or 0) + (total_debt or 0)
|
| 830 |
-
roic = self.utils.safe_divide(net_income, invested_capital) if invested_capital > 0 else None
|
| 831 |
-
capital_employed = (assets or 0) - (current_liabilities or 0)
|
| 832 |
-
roce = self.utils.safe_divide(ebit, capital_employed) if capital_employed > 0 else None
|
| 833 |
-
|
| 834 |
-
net_margin = self.utils.safe_divide(net_income, revenue)
|
| 835 |
-
ebitda_margin = self.utils.safe_divide(ebitda, revenue)
|
| 836 |
-
|
| 837 |
-
current_ratio = self.utils.safe_divide(current_assets, current_liabilities)
|
| 838 |
-
quick_assets = (current_assets or 0) - (inventory or 0) if current_assets is not None and inventory is not None else current_assets
|
| 839 |
-
quick_ratio = self.utils.safe_divide(quick_assets, current_liabilities)
|
| 840 |
-
cash_ratio = self.utils.safe_divide(cash, current_liabilities)
|
| 841 |
-
ocf_to_current_liabilities = self.utils.safe_divide(operating_cash_flow, current_liabilities)
|
| 842 |
-
|
| 843 |
-
# Efficiency ratios: prefer cost of revenue for inventory turnover if available
|
| 844 |
-
cost_of_revenue = info.get("costOfRevenue") or self.extractor.get_financial_item("Cost of Revenue", ["CostOfRevenue"])
|
| 845 |
-
asset_turnover = self.utils.safe_divide(revenue, assets)
|
| 846 |
-
inventory_turnover = None
|
| 847 |
-
if cost_of_revenue is not None and inventory is not None:
|
| 848 |
-
inventory_turnover = self.utils.safe_divide(cost_of_revenue, inventory)
|
| 849 |
-
elif revenue is not None and inventory is not None and inventory != 0:
|
| 850 |
-
inventory_turnover = self.utils.safe_divide(revenue, inventory) # fallback
|
| 851 |
-
|
| 852 |
-
receivables_turnover = None
|
| 853 |
-
if revenue is not None and accounts_receivable is not None:
|
| 854 |
-
receivables_turnover = self.utils.safe_divide(revenue, accounts_receivable)
|
| 855 |
-
|
| 856 |
-
days_sales_outstanding = None
|
| 857 |
-
if receivables_turnover and receivables_turnover != 0:
|
| 858 |
-
days_sales_outstanding = 365.0 / receivables_turnover
|
| 859 |
-
|
| 860 |
-
debt_to_equity = self.utils.safe_divide(total_debt, equity)
|
| 861 |
-
debt_to_assets = self.utils.safe_divide(total_debt, assets)
|
| 862 |
-
equity_ratio = self.utils.safe_divide(equity, assets)
|
| 863 |
-
debt_to_capital = None
|
| 864 |
-
if total_debt is not None and equity is not None:
|
| 865 |
-
denom = (total_debt + equity)
|
| 866 |
-
debt_to_capital = self.utils.safe_divide(total_debt, denom) if denom != 0 else None
|
| 867 |
-
|
| 868 |
-
interest_coverage = self.utils.safe_divide(ebit, interest_expense)
|
| 869 |
-
|
| 870 |
-
fcf_yield = None
|
| 871 |
-
if free_cash_flow is not None and market_cap:
|
| 872 |
-
fcf_yield = self.utils.safe_divide(free_cash_flow, market_cap)
|
| 873 |
-
|
| 874 |
-
quality_of_earnings = None
|
| 875 |
-
if operating_cash_flow is not None and net_income is not None and net_income != 0:
|
| 876 |
-
quality_of_earnings = self.utils.safe_divide(operating_cash_flow, net_income)
|
| 877 |
-
|
| 878 |
-
fm = FinancialMetrics(
|
| 879 |
-
price=price,
|
| 880 |
-
market_cap=market_cap,
|
| 881 |
-
shares_outstanding=shares_out,
|
| 882 |
-
pe_ratio=pe_ratio,
|
| 883 |
-
pb_ratio=pb_ratio,
|
| 884 |
-
peg_ratio=peg_ratio,
|
| 885 |
-
ev_ebitda=ev_ebitda,
|
| 886 |
-
ps_ratio=ps_ratio,
|
| 887 |
-
pcf_ratio=pcf_ratio,
|
| 888 |
-
ev_sales=ev_sales,
|
| 889 |
-
dividend_yield=dividend_yield,
|
| 890 |
-
roe=roe,
|
| 891 |
-
roa=roa,
|
| 892 |
-
roic=roic,
|
| 893 |
-
roce=roce,
|
| 894 |
-
gross_margin=gross_margin,
|
| 895 |
-
operating_margin=operating_margin,
|
| 896 |
-
net_margin=net_margin,
|
| 897 |
-
ebitda_margin=ebitda_margin,
|
| 898 |
-
current_ratio=current_ratio,
|
| 899 |
-
quick_ratio=quick_ratio,
|
| 900 |
-
cash_ratio=cash_ratio,
|
| 901 |
-
ocf_to_current_liabilities=ocf_to_current_liabilities,
|
| 902 |
-
asset_turnover=asset_turnover,
|
| 903 |
-
inventory_turnover=inventory_turnover,
|
| 904 |
-
receivables_turnover=receivables_turnover,
|
| 905 |
-
days_sales_outstanding=days_sales_outstanding,
|
| 906 |
-
debt_to_equity=debt_to_equity,
|
| 907 |
-
debt_to_assets=debt_to_assets,
|
| 908 |
-
equity_ratio=equity_ratio,
|
| 909 |
-
debt_to_capital=debt_to_capital,
|
| 910 |
-
interest_coverage=interest_coverage,
|
| 911 |
-
operating_cash_flow=operating_cash_flow,
|
| 912 |
-
capex=capex,
|
| 913 |
-
free_cash_flow=free_cash_flow,
|
| 914 |
-
fcf_yield=fcf_yield,
|
| 915 |
-
quality_of_earnings=quality_of_earnings,
|
| 916 |
-
revenue_growth=revenue_growth,
|
| 917 |
-
earnings_growth=earnings_growth,
|
| 918 |
-
enterprise_value=enterprise_value,
|
| 919 |
-
book_value=book_value,
|
| 920 |
-
eps=eps
|
| 921 |
-
)
|
| 922 |
-
|
| 923 |
-
return fm
|
| 924 |
-
|
| 925 |
-
return await loop.run_in_executor(None, _calculate)
|
| 926 |
-
|
| 927 |
|
| 928 |
-
|
|
|
|
| 2 |
from typing import Dict, Any, List, Optional
|
| 3 |
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
|
| 6 |
from src.core.fundamental_analysis.core_models import TickerData, FinancialMetrics, DCFResult
|
| 7 |
from src.core.fundamental_analysis.async_data_fetcher import AsyncDataFetcher
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
class AsyncFundamentalAnalyzer:
|
| 17 |
+
"""
|
| 18 |
+
Main orchestrator for performing asynchronous fundamental analysis on a stock ticker.
|
| 19 |
+
Manages data fetching, metric calculation, valuation, and reporting.
|
| 20 |
+
"""
|
| 21 |
|
| 22 |
def __init__(self, ticker: str, max_workers: int = 5):
|
| 23 |
self.ticker = ticker.upper()
|
| 24 |
+
# Each analyzer instance manages its own data fetcher
|
| 25 |
self.data_fetcher = AsyncDataFetcher(max_workers=max_workers)
|
| 26 |
self.dcf_calculator = DCFCalculator()
|
| 27 |
self.report_generator = ReportGenerator()
|
| 28 |
self.peer_comparison = PeerComparison(self.data_fetcher)
|
|
|
|
|
|
|
| 29 |
self._ticker_data: Optional[TickerData] = None
|
| 30 |
|
| 31 |
async def _ensure_ticker_data(self) -> TickerData:
|
| 32 |
+
"""Lazily fetches and caches the ticker's core financial data."""
|
| 33 |
if self._ticker_data is None:
|
| 34 |
self._ticker_data = await self.data_fetcher.fetch_ticker_data(self.ticker)
|
| 35 |
return self._ticker_data
|
| 36 |
|
| 37 |
async def calculate_metrics(self) -> FinancialMetrics:
|
| 38 |
+
"""Calculates a comprehensive set of financial metrics."""
|
| 39 |
ticker_data = await self._ensure_ticker_data()
|
| 40 |
data_extractor = DataExtractor(ticker_data)
|
| 41 |
metrics_calculator = MetricsCalculator(data_extractor)
|
| 42 |
return await metrics_calculator.calculate_all_metrics()
|
| 43 |
|
| 44 |
+
# This method can remain async to be compatible with asyncio.gather
|
| 45 |
+
async def calculate_dcf(self, metrics: FinancialMetrics, growth_rate: float,
|
| 46 |
+
discount_rate: float, projection_years: int) -> DCFResult:
|
| 47 |
+
"""
|
| 48 |
+
Wraps the synchronous DCF calculation.
|
| 49 |
+
This method is async to allow it to be seamlessly used in asyncio.gather streams.
|
| 50 |
+
"""
|
| 51 |
+
# FIX: Removed 'await' as dcf_calculator.calculate_dcf is a synchronous method.
|
| 52 |
+
return self.dcf_calculator.calculate_dcf(
|
| 53 |
+
base_fcf=metrics.free_cash_flow,
|
| 54 |
growth_rate=growth_rate,
|
| 55 |
discount_rate=discount_rate,
|
| 56 |
projection_years=projection_years,
|
| 57 |
+
shares_outstanding=metrics.shares_outstanding
|
| 58 |
)
|
| 59 |
|
| 60 |
async def compare_with_peers(self, sort_by: str = "P/E") -> pd.DataFrame:
|
| 61 |
+
"""Generates a peer comparison DataFrame against the MAG7 stocks."""
|
| 62 |
return await self.peer_comparison.compare_with_mag7(self.ticker, sort_by)
|
| 63 |
|
| 64 |
async def generate_report(self, sort_by: str = "P/E", dcf_growth: float = 0.05,
|
| 65 |
dcf_discount: float = 0.10, dcf_years: int = 5) -> str:
|
| 66 |
+
"""Generates a comprehensive fundamental analysis report."""
|
| 67 |
+
# FIX: Run independent I/O-bound tasks concurrently for maximum efficiency.
|
| 68 |
metrics_task = self.calculate_metrics()
|
| 69 |
peer_comparison_task = self.compare_with_peers(sort_by=sort_by)
|
| 70 |
|
| 71 |
+
# Await both tasks together
|
| 72 |
+
metrics, peer_comparison = await asyncio.gather(metrics_task, peer_comparison_task)
|
| 73 |
|
| 74 |
+
# The DCF calculation is CPU-bound and fast, so it doesn't need its own task.
|
| 75 |
+
# It can be called directly after its dependencies (metrics) are ready.
|
| 76 |
+
dcf_result = self.dcf_calculator.calculate_dcf(
|
| 77 |
base_fcf=metrics.free_cash_flow,
|
| 78 |
growth_rate=dcf_growth,
|
| 79 |
discount_rate=dcf_discount,
|
|
|
|
| 81 |
shares_outstanding=metrics.shares_outstanding
|
| 82 |
)
|
| 83 |
|
|
|
|
|
|
|
| 84 |
return await self.report_generator.generate_telegram_report(
|
| 85 |
ticker=self.ticker,
|
| 86 |
metrics=metrics,
|
|
|
|
| 89 |
sort_by=sort_by
|
| 90 |
)
|
| 91 |
|
| 92 |
+
@staticmethod
|
| 93 |
+
async def batch_analyze(tickers: List[str]) -> Dict[str, str]:
|
| 94 |
+
"""Analyzes multiple tickers concurrently and returns a dictionary of reports."""
|
| 95 |
+
|
| 96 |
+
async def _analyze_one(ticker):
|
| 97 |
+
async with AsyncFundamentalAnalyzer(ticker) as analyzer:
|
| 98 |
+
return await analyzer.generate_report()
|
| 99 |
|
| 100 |
+
tasks = [_analyze_one(ticker) for ticker in tickers]
|
| 101 |
results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 102 |
|
| 103 |
reports = {}
|
| 104 |
+
for ticker, result in zip(tickers, results):
|
| 105 |
if isinstance(result, Exception):
|
| 106 |
+
reports[ticker] = f"Error analyzing {ticker}: {result}"
|
| 107 |
else:
|
| 108 |
+
reports[ticker] = result
|
|
|
|
| 109 |
return reports
|
| 110 |
|
| 111 |
async def __aenter__(self):
|
| 112 |
+
"""Async context manager entry: enters the data_fetcher context."""
|
| 113 |
+
await self.data_fetcher.__aenter__()
|
| 114 |
return self
|
| 115 |
|
| 116 |
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
| 117 |
+
"""Async context manager exit: properly exits the data_fetcher context."""
|
| 118 |
+
await self.data_fetcher.__aexit__(exc_type, exc_val, exc_tb)
|
| 119 |
+
|
| 120 |
|
| 121 |
+
# --- Convenience Functions ---
|
| 122 |
|
|
|
|
| 123 |
async def analyze_ticker(ticker: str, **kwargs) -> str:
|
| 124 |
+
"""Convenience function to analyze and generate a report for a single ticker."""
|
| 125 |
async with AsyncFundamentalAnalyzer(ticker) as analyzer:
|
| 126 |
return await analyzer.generate_report(**kwargs)
|
| 127 |
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
async def quick_comparison(tickers: List[str], sort_by: str = "P/E") -> pd.DataFrame:
|
| 130 |
+
"""
|
| 131 |
+
Generates a comparison DataFrame for a list of tickers using key metrics.
|
| 132 |
+
FIX: This function now reuses the existing calculation modules to ensure consistency.
|
| 133 |
+
"""
|
| 134 |
+
rows = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
async def get_metrics_for_ticker(ticker):
|
| 137 |
try:
|
| 138 |
+
async with AsyncFundamentalAnalyzer(ticker) as analyzer:
|
| 139 |
+
return await analyzer.calculate_metrics()
|
| 140 |
+
except Exception as e:
|
| 141 |
+
print(f"Could not fetch metrics for {ticker}: {e}")
|
| 142 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
tasks = [get_metrics_for_ticker(ticker) for ticker in tickers]
|
| 145 |
+
results = await asyncio.gather(*tasks)
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
for ticker, metrics in zip(tickers, results):
|
| 148 |
+
if metrics:
|
| 149 |
rows.append({
|
| 150 |
"Ticker": ticker,
|
| 151 |
+
"Price": metrics.price,
|
| 152 |
+
"Market Cap": metrics.market_cap,
|
| 153 |
+
"P/E": metrics.pe_ratio,
|
| 154 |
+
"P/B": metrics.pb_ratio,
|
| 155 |
+
"EV/EBITDA": metrics.ev_ebitda,
|
| 156 |
+
"Net Margin": metrics.net_margin,
|
| 157 |
+
"ROE": metrics.roe
|
| 158 |
})
|
| 159 |
+
|
| 160 |
+
if not rows:
|
| 161 |
+
return pd.DataFrame()
|
| 162 |
|
| 163 |
df = pd.DataFrame(rows)
|
| 164 |
if sort_by in df.columns:
|
| 165 |
+
df = df.sort_values(by=sort_by, na_position='last', ignore_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
return df
|