Spaces:
Running
Running
Upload index.html
Browse files- index.html +0 -903
index.html
CHANGED
|
@@ -1,903 +0,0 @@
|
|
| 1 |
-
<!DOCTYPE html>
|
| 2 |
-
<html lang="en">
|
| 3 |
-
<head>
|
| 4 |
-
<meta charset="UTF-8">
|
| 5 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
-
<title>AI Explainer: How Neural Networks Work</title>
|
| 7 |
-
<style>
|
| 8 |
-
* {
|
| 9 |
-
margin: 0;
|
| 10 |
-
padding: 0;
|
| 11 |
-
box-sizing: border-box;
|
| 12 |
-
}
|
| 13 |
-
|
| 14 |
-
body {
|
| 15 |
-
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
| 16 |
-
background: #0a0a0a;
|
| 17 |
-
color: #e0e0e0;
|
| 18 |
-
line-height: 1.6;
|
| 19 |
-
overflow-x: hidden;
|
| 20 |
-
}
|
| 21 |
-
|
| 22 |
-
.container {
|
| 23 |
-
max-width: 1200px;
|
| 24 |
-
margin: 0 auto;
|
| 25 |
-
padding: 20px;
|
| 26 |
-
}
|
| 27 |
-
|
| 28 |
-
header {
|
| 29 |
-
text-align: center;
|
| 30 |
-
padding: 40px 20px;
|
| 31 |
-
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
|
| 32 |
-
margin-bottom: 40px;
|
| 33 |
-
border-radius: 20px;
|
| 34 |
-
}
|
| 35 |
-
|
| 36 |
-
h1 {
|
| 37 |
-
font-size: clamp(2rem, 5vw, 3rem);
|
| 38 |
-
margin-bottom: 10px;
|
| 39 |
-
background: linear-gradient(135deg, #fff 0%, #a8dadc 100%);
|
| 40 |
-
-webkit-background-clip: text;
|
| 41 |
-
-webkit-text-fill-color: transparent;
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
.mode-toggle {
|
| 45 |
-
display: flex;
|
| 46 |
-
justify-content: center;
|
| 47 |
-
gap: 20px;
|
| 48 |
-
margin: 30px 0;
|
| 49 |
-
flex-wrap: wrap;
|
| 50 |
-
}
|
| 51 |
-
|
| 52 |
-
.mode-btn {
|
| 53 |
-
padding: 12px 30px;
|
| 54 |
-
background: #2a5298;
|
| 55 |
-
color: white;
|
| 56 |
-
border: none;
|
| 57 |
-
border-radius: 50px;
|
| 58 |
-
cursor: pointer;
|
| 59 |
-
font-size: 16px;
|
| 60 |
-
transition: all 0.3s ease;
|
| 61 |
-
font-weight: 600;
|
| 62 |
-
}
|
| 63 |
-
|
| 64 |
-
.mode-btn.active {
|
| 65 |
-
background: #4CAF50;
|
| 66 |
-
transform: scale(1.05);
|
| 67 |
-
}
|
| 68 |
-
|
| 69 |
-
.mode-btn:hover {
|
| 70 |
-
transform: translateY(-2px);
|
| 71 |
-
box-shadow: 0 5px 15px rgba(74, 144, 226, 0.3);
|
| 72 |
-
}
|
| 73 |
-
|
| 74 |
-
.section {
|
| 75 |
-
background: #1a1a1a;
|
| 76 |
-
padding: 30px;
|
| 77 |
-
margin-bottom: 30px;
|
| 78 |
-
border-radius: 20px;
|
| 79 |
-
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.5);
|
| 80 |
-
}
|
| 81 |
-
|
| 82 |
-
.section h2 {
|
| 83 |
-
color: #4CAF50;
|
| 84 |
-
margin-bottom: 20px;
|
| 85 |
-
font-size: clamp(1.5rem, 4vw, 2rem);
|
| 86 |
-
}
|
| 87 |
-
|
| 88 |
-
.section h3 {
|
| 89 |
-
color: #81C784;
|
| 90 |
-
margin: 20px 0 10px 0;
|
| 91 |
-
font-size: clamp(1.2rem, 3vw, 1.5rem);
|
| 92 |
-
}
|
| 93 |
-
|
| 94 |
-
.math-content {
|
| 95 |
-
background: #0d0d0d;
|
| 96 |
-
padding: 20px;
|
| 97 |
-
border-radius: 10px;
|
| 98 |
-
overflow-x: auto;
|
| 99 |
-
margin: 15px 0;
|
| 100 |
-
border: 1px solid #333;
|
| 101 |
-
}
|
| 102 |
-
|
| 103 |
-
.learn-content {
|
| 104 |
-
background: #1e3c72;
|
| 105 |
-
padding: 20px;
|
| 106 |
-
border-radius: 10px;
|
| 107 |
-
margin: 15px 0;
|
| 108 |
-
line-height: 1.8;
|
| 109 |
-
}
|
| 110 |
-
|
| 111 |
-
#xor-demo {
|
| 112 |
-
background: #0d0d0d;
|
| 113 |
-
padding: 20px;
|
| 114 |
-
border-radius: 15px;
|
| 115 |
-
margin: 20px 0;
|
| 116 |
-
}
|
| 117 |
-
|
| 118 |
-
#network-canvas {
|
| 119 |
-
width: 100%;
|
| 120 |
-
max-width: 800px;
|
| 121 |
-
height: 400px;
|
| 122 |
-
background: #000;
|
| 123 |
-
border-radius: 10px;
|
| 124 |
-
margin: 20px auto;
|
| 125 |
-
display: block;
|
| 126 |
-
}
|
| 127 |
-
|
| 128 |
-
.controls {
|
| 129 |
-
display: flex;
|
| 130 |
-
gap: 15px;
|
| 131 |
-
justify-content: center;
|
| 132 |
-
flex-wrap: wrap;
|
| 133 |
-
margin: 20px 0;
|
| 134 |
-
}
|
| 135 |
-
|
| 136 |
-
.control-btn {
|
| 137 |
-
padding: 10px 25px;
|
| 138 |
-
background: #4CAF50;
|
| 139 |
-
color: white;
|
| 140 |
-
border: none;
|
| 141 |
-
border-radius: 5px;
|
| 142 |
-
cursor: pointer;
|
| 143 |
-
font-size: 16px;
|
| 144 |
-
transition: all 0.3s ease;
|
| 145 |
-
}
|
| 146 |
-
|
| 147 |
-
.control-btn:hover {
|
| 148 |
-
background: #45a049;
|
| 149 |
-
transform: translateY(-2px);
|
| 150 |
-
}
|
| 151 |
-
|
| 152 |
-
.control-btn:disabled {
|
| 153 |
-
background: #666;
|
| 154 |
-
cursor: not-allowed;
|
| 155 |
-
}
|
| 156 |
-
|
| 157 |
-
.stats {
|
| 158 |
-
display: grid;
|
| 159 |
-
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
| 160 |
-
gap: 15px;
|
| 161 |
-
margin: 20px 0;
|
| 162 |
-
}
|
| 163 |
-
|
| 164 |
-
.stat-box {
|
| 165 |
-
background: #1a1a1a;
|
| 166 |
-
padding: 15px;
|
| 167 |
-
border-radius: 10px;
|
| 168 |
-
text-align: center;
|
| 169 |
-
border: 1px solid #333;
|
| 170 |
-
}
|
| 171 |
-
|
| 172 |
-
.stat-label {
|
| 173 |
-
color: #888;
|
| 174 |
-
font-size: 14px;
|
| 175 |
-
}
|
| 176 |
-
|
| 177 |
-
.stat-value {
|
| 178 |
-
color: #4CAF50;
|
| 179 |
-
font-size: 24px;
|
| 180 |
-
font-weight: bold;
|
| 181 |
-
margin-top: 5px;
|
| 182 |
-
}
|
| 183 |
-
|
| 184 |
-
.loss-chart {
|
| 185 |
-
width: 100%;
|
| 186 |
-
height: 200px;
|
| 187 |
-
background: #000;
|
| 188 |
-
border-radius: 10px;
|
| 189 |
-
margin: 20px 0;
|
| 190 |
-
}
|
| 191 |
-
|
| 192 |
-
.formula {
|
| 193 |
-
font-family: 'Courier New', monospace;
|
| 194 |
-
color: #64B5F6;
|
| 195 |
-
padding: 10px;
|
| 196 |
-
background: rgba(0, 0, 0, 0.5);
|
| 197 |
-
border-radius: 5px;
|
| 198 |
-
overflow-x: auto;
|
| 199 |
-
white-space: nowrap;
|
| 200 |
-
margin: 10px 0;
|
| 201 |
-
}
|
| 202 |
-
|
| 203 |
-
.highlight {
|
| 204 |
-
background: #4CAF50;
|
| 205 |
-
color: #000;
|
| 206 |
-
padding: 2px 6px;
|
| 207 |
-
border-radius: 3px;
|
| 208 |
-
font-weight: bold;
|
| 209 |
-
}
|
| 210 |
-
|
| 211 |
-
@media (max-width: 768px) {
|
| 212 |
-
.container {
|
| 213 |
-
padding: 10px;
|
| 214 |
-
}
|
| 215 |
-
|
| 216 |
-
.section {
|
| 217 |
-
padding: 20px;
|
| 218 |
-
}
|
| 219 |
-
|
| 220 |
-
#network-canvas {
|
| 221 |
-
height: 300px;
|
| 222 |
-
}
|
| 223 |
-
|
| 224 |
-
.controls {
|
| 225 |
-
gap: 10px;
|
| 226 |
-
}
|
| 227 |
-
|
| 228 |
-
.control-btn {
|
| 229 |
-
padding: 8px 20px;
|
| 230 |
-
font-size: 14px;
|
| 231 |
-
}
|
| 232 |
-
}
|
| 233 |
-
|
| 234 |
-
.mode-content {
|
| 235 |
-
display: none;
|
| 236 |
-
}
|
| 237 |
-
|
| 238 |
-
.mode-content.active {
|
| 239 |
-
display: block;
|
| 240 |
-
}
|
| 241 |
-
|
| 242 |
-
.animated-number {
|
| 243 |
-
transition: all 0.3s ease;
|
| 244 |
-
}
|
| 245 |
-
|
| 246 |
-
@keyframes pulse {
|
| 247 |
-
0% { transform: scale(1); }
|
| 248 |
-
50% { transform: scale(1.1); }
|
| 249 |
-
100% { transform: scale(1); }
|
| 250 |
-
}
|
| 251 |
-
|
| 252 |
-
.pulse {
|
| 253 |
-
animation: pulse 0.5s ease;
|
| 254 |
-
}
|
| 255 |
-
</style>
|
| 256 |
-
</head>
|
| 257 |
-
<body>
|
| 258 |
-
<div class="container">
|
| 259 |
-
<header>
|
| 260 |
-
<h1>🧠 How AI Really Works</h1>
|
| 261 |
-
<p>An Interactive Journey Inside Neural Networks</p>
|
| 262 |
-
</header>
|
| 263 |
-
|
| 264 |
-
<div class="mode-toggle">
|
| 265 |
-
<button class="mode-btn active" onclick="setMode('learn')">🎓 Learn Mode</button>
|
| 266 |
-
<button class="mode-btn" onclick="setMode('math')">🔢 Math Mode</button>
|
| 267 |
-
</div>
|
| 268 |
-
|
| 269 |
-
<div class="section">
|
| 270 |
-
<h2>What is a Neural Network?</h2>
|
| 271 |
-
|
| 272 |
-
<div class="mode-content learn-mode active">
|
| 273 |
-
<div class="learn-content">
|
| 274 |
-
<p>Imagine your brain is made of billions of tiny decision-makers called neurons. Each neuron:</p>
|
| 275 |
-
<ul style="margin: 15px 0; padding-left: 30px;">
|
| 276 |
-
<li>🎯 Takes in information (inputs)</li>
|
| 277 |
-
<li>🤔 Thinks about it (processing)</li>
|
| 278 |
-
<li>💡 Makes a decision (output)</li>
|
| 279 |
-
</ul>
|
| 280 |
-
<p>An AI neural network works the same way! It's like a simplified brain made of math. Let's see it in action!</p>
|
| 281 |
-
</div>
|
| 282 |
-
</div>
|
| 283 |
-
|
| 284 |
-
<div class="mode-content math-mode">
|
| 285 |
-
<div class="math-content">
|
| 286 |
-
<p>A neural network is a function approximator that transforms inputs through layers of neurons:</p>
|
| 287 |
-
<div class="formula">
|
| 288 |
-
f(x) = σ(W₃ · σ(W₂ · σ(W₁ · x + b₁) + b₂) + b₃)
|
| 289 |
-
</div>
|
| 290 |
-
<p>Where:</p>
|
| 291 |
-
<ul style="margin: 15px 0; padding-left: 30px;">
|
| 292 |
-
<li>x = input vector</li>
|
| 293 |
-
<li>Wᵢ = weight matrix for layer i</li>
|
| 294 |
-
<li>bᵢ = bias vector for layer i</li>
|
| 295 |
-
<li>σ = activation function (e.g., ReLU, sigmoid)</li>
|
| 296 |
-
</ul>
|
| 297 |
-
</div>
|
| 298 |
-
</div>
|
| 299 |
-
</div>
|
| 300 |
-
|
| 301 |
-
<div class="section">
|
| 302 |
-
<h2>🎮 Live XOR Training Demo</h2>
|
| 303 |
-
<p>Watch an AI learn the XOR problem in real-time! XOR outputs 1 when inputs are different, 0 when same.</p>
|
| 304 |
-
|
| 305 |
-
<div id="xor-demo">
|
| 306 |
-
<canvas id="network-canvas"></canvas>
|
| 307 |
-
|
| 308 |
-
<div class="controls">
|
| 309 |
-
<button class="control-btn" onclick="startTraining()">▶️ Start Training</button>
|
| 310 |
-
<button class="control-btn" onclick="pauseTraining()">⏸️ Pause</button>
|
| 311 |
-
<button class="control-btn" onclick="resetNetwork()">🔄 Reset</button>
|
| 312 |
-
<button class="control-btn" onclick="stepTraining()">⏭️ Step</button>
|
| 313 |
-
</div>
|
| 314 |
-
|
| 315 |
-
<div class="stats">
|
| 316 |
-
<div class="stat-box">
|
| 317 |
-
<div class="stat-label">Epoch</div>
|
| 318 |
-
<div class="stat-value animated-number" id="epoch">0</div>
|
| 319 |
-
</div>
|
| 320 |
-
<div class="stat-box">
|
| 321 |
-
<div class="stat-label">Loss</div>
|
| 322 |
-
<div class="stat-value animated-number" id="loss">1.000</div>
|
| 323 |
-
</div>
|
| 324 |
-
<div class="stat-box">
|
| 325 |
-
<div class="stat-label">Accuracy</div>
|
| 326 |
-
<div class="stat-value animated-number" id="accuracy">0%</div>
|
| 327 |
-
</div>
|
| 328 |
-
<div class="stat-box">
|
| 329 |
-
<div class="stat-label">Learning Rate</div>
|
| 330 |
-
<div class="stat-value" id="learning-rate">0.1</div>
|
| 331 |
-
</div>
|
| 332 |
-
</div>
|
| 333 |
-
|
| 334 |
-
<canvas id="loss-chart" class="loss-chart"></canvas>
|
| 335 |
-
</div>
|
| 336 |
-
</div>
|
| 337 |
-
|
| 338 |
-
<div class="section">
|
| 339 |
-
<h2>How Does Learning Work?</h2>
|
| 340 |
-
|
| 341 |
-
<div class="mode-content learn-mode active">
|
| 342 |
-
<h3>🎯 Forward Pass: Making Predictions</h3>
|
| 343 |
-
<div class="learn-content">
|
| 344 |
-
<p>The network makes a prediction by passing data forward through each layer:</p>
|
| 345 |
-
<ol style="margin: 15px 0; padding-left: 30px;">
|
| 346 |
-
<li><span class="highlight">Input</span>: Feed in the data (like 0,1 for XOR)</li>
|
| 347 |
-
<li><span class="highlight">Multiply & Add</span>: Each connection has a "strength" (weight)</li>
|
| 348 |
-
<li><span class="highlight">Activate</span>: Decide if the neuron should "fire"</li>
|
| 349 |
-
<li><span class="highlight">Output</span>: Get the final prediction</li>
|
| 350 |
-
</ol>
|
| 351 |
-
</div>
|
| 352 |
-
|
| 353 |
-
<h3>📉 Backward Pass: Learning from Mistakes</h3>
|
| 354 |
-
<div class="learn-content">
|
| 355 |
-
<p>When the network is wrong, it learns by adjusting its connections:</p>
|
| 356 |
-
<ol style="margin: 15px 0; padding-left: 30px;">
|
| 357 |
-
<li><span class="highlight">Calculate Error</span>: How wrong was the prediction?</li>
|
| 358 |
-
<li><span class="highlight">Blame Game</span>: Which connections caused the error?</li>
|
| 359 |
-
<li><span class="highlight">Adjust Weights</span>: Make connections stronger or weaker</li>
|
| 360 |
-
<li><span class="highlight">Repeat</span>: Try again with new weights!</li>
|
| 361 |
-
</ol>
|
| 362 |
-
</div>
|
| 363 |
-
</div>
|
| 364 |
-
|
| 365 |
-
<div class="mode-content math-mode">
|
| 366 |
-
<h3>Forward Propagation</h3>
|
| 367 |
-
<div class="math-content">
|
| 368 |
-
<p>For each layer l:</p>
|
| 369 |
-
<div class="formula">
|
| 370 |
-
z[l] = W[l] · a[l-1] + b[l]
|
| 371 |
-
</div>
|
| 372 |
-
<div class="formula">
|
| 373 |
-
a[l] = σ(z[l])
|
| 374 |
-
</div>
|
| 375 |
-
<p>Where a[0] = x (input) and a[L] = ŷ (output)</p>
|
| 376 |
-
</div>
|
| 377 |
-
|
| 378 |
-
<h3>Backpropagation</h3>
|
| 379 |
-
<div class="math-content">
|
| 380 |
-
<p>Loss function (Mean Squared Error):</p>
|
| 381 |
-
<div class="formula">
|
| 382 |
-
L = ½ Σ(y - ŷ)²
|
| 383 |
-
</div>
|
| 384 |
-
<p>Gradient computation:</p>
|
| 385 |
-
<div class="formula">
|
| 386 |
-
δ[L] = ∇ₐL ⊙ σ'(z[L])
|
| 387 |
-
</div>
|
| 388 |
-
<div class="formula">
|
| 389 |
-
δ[l] = (W[l+1]ᵀ · δ[l+1]) ⊙ σ'(z[l])
|
| 390 |
-
</div>
|
| 391 |
-
<p>Weight update:</p>
|
| 392 |
-
<div class="formula">
|
| 393 |
-
W[l] = W[l] - α · δ[l] · a[l-1]ᵀ
|
| 394 |
-
</div>
|
| 395 |
-
<div class="formula">
|
| 396 |
-
b[l] = b[l] - α · δ[l]
|
| 397 |
-
</div>
|
| 398 |
-
</div>
|
| 399 |
-
</div>
|
| 400 |
-
</div>
|
| 401 |
-
|
| 402 |
-
<div class="section">
|
| 403 |
-
<h2>Key Components Explained</h2>
|
| 404 |
-
|
| 405 |
-
<div class="mode-content learn-mode active">
|
| 406 |
-
<h3>🔗 Weights & Biases</h3>
|
| 407 |
-
<div class="learn-content">
|
| 408 |
-
<p><span class="highlight">Weights</span> are like volume knobs - they control how much each input matters.</p>
|
| 409 |
-
<p><span class="highlight">Biases</span> are like thresholds - they decide when a neuron should activate.</p>
|
| 410 |
-
</div>
|
| 411 |
-
|
| 412 |
-
<h3>⚡ Activation Functions</h3>
|
| 413 |
-
<div class="learn-content">
|
| 414 |
-
<p>These decide if a neuron should "fire" or not:</p>
|
| 415 |
-
<ul style="margin: 15px 0; padding-left: 30px;">
|
| 416 |
-
<li><span class="highlight">ReLU</span>: If positive, pass it on. If negative, block it!</li>
|
| 417 |
-
<li><span class="highlight">Sigmoid</span>: Squash everything between 0 and 1</li>
|
| 418 |
-
<li><span class="highlight">Tanh</span>: Squash everything between -1 and 1</li>
|
| 419 |
-
</ul>
|
| 420 |
-
</div>
|
| 421 |
-
|
| 422 |
-
<h3>🎯 Gradient Descent</h3>
|
| 423 |
-
<div class="learn-content">
|
| 424 |
-
<p>Imagine you're blindfolded on a hill, trying to reach the bottom:</p>
|
| 425 |
-
<ol style="margin: 15px 0; padding-left: 30px;">
|
| 426 |
-
<li>Feel the slope around you (calculate gradient)</li>
|
| 427 |
-
<li>Take a small step downhill (adjust weights)</li>
|
| 428 |
-
<li>Repeat until you reach the bottom (minimum loss)</li>
|
| 429 |
-
</ol>
|
| 430 |
-
</div>
|
| 431 |
-
</div>
|
| 432 |
-
|
| 433 |
-
<div class="mode-content math-mode">
|
| 434 |
-
<h3>Activation Functions</h3>
|
| 435 |
-
<div class="math-content">
|
| 436 |
-
<p><strong>ReLU:</strong></p>
|
| 437 |
-
<div class="formula">
|
| 438 |
-
f(x) = max(0, x)
|
| 439 |
-
</div>
|
| 440 |
-
<div class="formula">
|
| 441 |
-
f'(x) = {1 if x > 0, 0 if x ≤ 0}
|
| 442 |
-
</div>
|
| 443 |
-
|
| 444 |
-
<p><strong>Sigmoid:</strong></p>
|
| 445 |
-
<div class="formula">
|
| 446 |
-
σ(x) = 1 / (1 + e⁻ˣ)
|
| 447 |
-
</div>
|
| 448 |
-
<div class="formula">
|
| 449 |
-
σ'(x) = σ(x) · (1 - σ(x))
|
| 450 |
-
</div>
|
| 451 |
-
|
| 452 |
-
<p><strong>Tanh:</strong></p>
|
| 453 |
-
<div class="formula">
|
| 454 |
-
tanh(x) = (eˣ - e⁻ˣ) / (eˣ + e⁻ˣ)
|
| 455 |
-
</div>
|
| 456 |
-
<div class="formula">
|
| 457 |
-
tanh'(x) = 1 - tanh²(x)
|
| 458 |
-
</div>
|
| 459 |
-
</div>
|
| 460 |
-
|
| 461 |
-
<h3>Gradient Descent Update Rule</h3>
|
| 462 |
-
<div class="math-content">
|
| 463 |
-
<div class="formula">
|
| 464 |
-
θₜ₊₁ = θₜ - α · ∇θ L(θₜ)
|
| 465 |
-
</div>
|
| 466 |
-
<p>Where:</p>
|
| 467 |
-
<ul style="margin: 15px 0; padding-left: 30px;">
|
| 468 |
-
<li>θ = parameters (weights and biases)</li>
|
| 469 |
-
<li>α = learning rate</li>
|
| 470 |
-
<li>∇θ L = gradient of loss with respect to parameters</li>
|
| 471 |
-
</ul>
|
| 472 |
-
</div>
|
| 473 |
-
</div>
|
| 474 |
-
</div>
|
| 475 |
-
</div>
|
| 476 |
-
|
| 477 |
-
<script>
|
| 478 |
-
// Global variables
|
| 479 |
-
let mode = 'learn';
|
| 480 |
-
let network = null;
|
| 481 |
-
let training = false;
|
| 482 |
-
let epoch = 0;
|
| 483 |
-
let lossHistory = [];
|
| 484 |
-
const canvas = document.getElementById('network-canvas');
|
| 485 |
-
const ctx = canvas.getContext('2d');
|
| 486 |
-
const lossCanvas = document.getElementById('loss-chart');
|
| 487 |
-
const lossCtx = lossCanvas.getContext('2d');
|
| 488 |
-
|
| 489 |
-
// Set canvas sizes
|
| 490 |
-
function resizeCanvases() {
|
| 491 |
-
canvas.width = canvas.offsetWidth;
|
| 492 |
-
canvas.height = canvas.offsetHeight;
|
| 493 |
-
lossCanvas.width = lossCanvas.offsetWidth;
|
| 494 |
-
lossCanvas.height = lossCanvas.offsetHeight;
|
| 495 |
-
}
|
| 496 |
-
resizeCanvases();
|
| 497 |
-
window.addEventListener('resize', resizeCanvases);
|
| 498 |
-
|
| 499 |
-
// Mode switching
|
| 500 |
-
function setMode(newMode) {
|
| 501 |
-
mode = newMode;
|
| 502 |
-
document.querySelectorAll('.mode-btn').forEach(btn => {
|
| 503 |
-
btn.classList.toggle('active', btn.textContent.toLowerCase().includes(newMode));
|
| 504 |
-
});
|
| 505 |
-
document.querySelectorAll('.mode-content').forEach(content => {
|
| 506 |
-
content.classList.toggle('active', content.classList.contains(`${newMode}-mode`));
|
| 507 |
-
});
|
| 508 |
-
}
|
| 509 |
-
|
| 510 |
-
// Neural Network Class
|
| 511 |
-
class NeuralNetwork {
|
| 512 |
-
constructor() {
|
| 513 |
-
// Network architecture: 2-25-25-1 (roughly 100 parameters)
|
| 514 |
-
this.layers = [2, 25, 25, 1];
|
| 515 |
-
this.weights = [];
|
| 516 |
-
this.biases = [];
|
| 517 |
-
this.activations = [];
|
| 518 |
-
this.zValues = [];
|
| 519 |
-
this.gradients = [];
|
| 520 |
-
this.learningRate = 0.1;
|
| 521 |
-
|
| 522 |
-
this.initializeNetwork();
|
| 523 |
-
}
|
| 524 |
-
|
| 525 |
-
initializeNetwork() {
|
| 526 |
-
// Xavier initialization
|
| 527 |
-
for (let i = 1; i < this.layers.length; i++) {
|
| 528 |
-
const rows = this.layers[i];
|
| 529 |
-
const cols = this.layers[i-1];
|
| 530 |
-
const scale = Math.sqrt(2.0 / cols);
|
| 531 |
-
|
| 532 |
-
// Initialize weights
|
| 533 |
-
this.weights[i-1] = [];
|
| 534 |
-
for (let r = 0; r < rows; r++) {
|
| 535 |
-
this.weights[i-1][r] = [];
|
| 536 |
-
for (let c = 0; c < cols; c++) {
|
| 537 |
-
this.weights[i-1][r][c] = (Math.random() * 2 - 1) * scale;
|
| 538 |
-
}
|
| 539 |
-
}
|
| 540 |
-
|
| 541 |
-
// Initialize biases
|
| 542 |
-
this.biases[i-1] = new Array(rows).fill(0);
|
| 543 |
-
}
|
| 544 |
-
}
|
| 545 |
-
|
| 546 |
-
sigmoid(x) {
|
| 547 |
-
return 1 / (1 + Math.exp(-x));
|
| 548 |
-
}
|
| 549 |
-
|
| 550 |
-
sigmoidDerivative(x) {
|
| 551 |
-
const s = this.sigmoid(x);
|
| 552 |
-
return s * (1 - s);
|
| 553 |
-
}
|
| 554 |
-
|
| 555 |
-
relu(x) {
|
| 556 |
-
return Math.max(0, x);
|
| 557 |
-
}
|
| 558 |
-
|
| 559 |
-
reluDerivative(x) {
|
| 560 |
-
return x > 0 ? 1 : 0;
|
| 561 |
-
}
|
| 562 |
-
|
| 563 |
-
forward(input) {
|
| 564 |
-
this.activations = [input];
|
| 565 |
-
this.zValues = [];
|
| 566 |
-
|
| 567 |
-
for (let i = 0; i < this.weights.length; i++) {
|
| 568 |
-
const z = [];
|
| 569 |
-
const a = [];
|
| 570 |
-
|
| 571 |
-
for (let j = 0; j < this.weights[i].length; j++) {
|
| 572 |
-
let sum = this.biases[i][j];
|
| 573 |
-
for (let k = 0; k < this.weights[i][j].length; k++) {
|
| 574 |
-
sum += this.weights[i][j][k] * this.activations[i][k];
|
| 575 |
-
}
|
| 576 |
-
z.push(sum);
|
| 577 |
-
|
| 578 |
-
// Use ReLU for hidden layers, sigmoid for output
|
| 579 |
-
if (i < this.weights.length - 1) {
|
| 580 |
-
a.push(this.relu(sum));
|
| 581 |
-
} else {
|
| 582 |
-
a.push(this.sigmoid(sum));
|
| 583 |
-
}
|
| 584 |
-
}
|
| 585 |
-
|
| 586 |
-
this.zValues.push(z);
|
| 587 |
-
this.activations.push(a);
|
| 588 |
-
}
|
| 589 |
-
|
| 590 |
-
return this.activations[this.activations.length - 1][0];
|
| 591 |
-
}
|
| 592 |
-
|
| 593 |
-
backward(input, target) {
|
| 594 |
-
const output = this.forward(input);
|
| 595 |
-
const error = output - target;
|
| 596 |
-
|
| 597 |
-
// Initialize gradients
|
| 598 |
-
this.gradients = [];
|
| 599 |
-
|
| 600 |
-
// Output layer gradients
|
| 601 |
-
let delta = [error * this.sigmoidDerivative(this.zValues[this.zValues.length - 1][0])];
|
| 602 |
-
this.gradients.unshift(delta);
|
| 603 |
-
|
| 604 |
-
// Hidden layer gradients
|
| 605 |
-
for (let i = this.weights.length - 2; i >= 0; i--) {
|
| 606 |
-
const newDelta = [];
|
| 607 |
-
for (let j = 0; j < this.weights[i].length; j++) {
|
| 608 |
-
let sum = 0;
|
| 609 |
-
for (let k = 0; k < delta.length; k++) {
|
| 610 |
-
sum += this.weights[i+1][k][j] * delta[k];
|
| 611 |
-
}
|
| 612 |
-
const activation = i > 0 ?
|
| 613 |
-
this.reluDerivative(this.zValues[i][j]) :
|
| 614 |
-
this.reluDerivative(this.zValues[i][j]);
|
| 615 |
-
newDelta.push(sum * activation);
|
| 616 |
-
}
|
| 617 |
-
delta = newDelta;
|
| 618 |
-
this.gradients.unshift(delta);
|
| 619 |
-
}
|
| 620 |
-
|
| 621 |
-
// Update weights and biases
|
| 622 |
-
for (let i = 0; i < this.weights.length; i++) {
|
| 623 |
-
for (let j = 0; j < this.weights[i].length; j++) {
|
| 624 |
-
for (let k = 0; k < this.weights[i][j].length; k++) {
|
| 625 |
-
this.weights[i][j][k] -= this.learningRate * this.gradients[i][j] * this.activations[i][k];
|
| 626 |
-
}
|
| 627 |
-
this.biases[i][j] -= this.learningRate * this.gradients[i][j];
|
| 628 |
-
}
|
| 629 |
-
}
|
| 630 |
-
|
| 631 |
-
return error * error;
|
| 632 |
-
}
|
| 633 |
-
|
| 634 |
-
train(inputs, targets) {
|
| 635 |
-
let totalLoss = 0;
|
| 636 |
-
for (let i = 0; i < inputs.length; i++) {
|
| 637 |
-
totalLoss += this.backward(inputs[i], targets[i]);
|
| 638 |
-
}
|
| 639 |
-
return totalLoss / inputs.length;
|
| 640 |
-
}
|
| 641 |
-
|
| 642 |
-
predict(input) {
|
| 643 |
-
return this.forward(input);
|
| 644 |
-
}
|
| 645 |
-
}
|
| 646 |
-
|
| 647 |
-
// XOR training data
|
| 648 |
-
const xorInputs = [[0, 0], [0, 1], [1, 0], [1, 1]];
|
| 649 |
-
const xorTargets = [0, 1, 1, 0];
|
| 650 |
-
|
| 651 |
-
// Initialize network
|
| 652 |
-
function resetNetwork() {
|
| 653 |
-
network = new NeuralNetwork();
|
| 654 |
-
epoch = 0;
|
| 655 |
-
lossHistory = [];
|
| 656 |
-
training = false;
|
| 657 |
-
updateStats();
|
| 658 |
-
drawNetwork();
|
| 659 |
-
drawLossChart();
|
| 660 |
-
}
|
| 661 |
-
|
| 662 |
-
// Training functions
|
| 663 |
-
function startTraining() {
|
| 664 |
-
training = true;
|
| 665 |
-
trainLoop();
|
| 666 |
-
}
|
| 667 |
-
|
| 668 |
-
function pauseTraining() {
|
| 669 |
-
training = false;
|
| 670 |
-
}
|
| 671 |
-
|
| 672 |
-
function stepTraining() {
|
| 673 |
-
if (!network) resetNetwork();
|
| 674 |
-
trainStep();
|
| 675 |
-
}
|
| 676 |
-
|
| 677 |
-
function trainStep() {
|
| 678 |
-
const loss = network.train(xorInputs, xorTargets);
|
| 679 |
-
epoch++;
|
| 680 |
-
lossHistory.push(loss);
|
| 681 |
-
if (lossHistory.length > 100) lossHistory.shift();
|
| 682 |
-
|
| 683 |
-
updateStats();
|
| 684 |
-
drawNetwork();
|
| 685 |
-
drawLossChart();
|
| 686 |
-
}
|
| 687 |
-
|
| 688 |
-
function trainLoop() {
|
| 689 |
-
if (!training) return;
|
| 690 |
-
|
| 691 |
-
trainStep();
|
| 692 |
-
|
| 693 |
-
if (epoch < 1000 && lossHistory[lossHistory.length - 1] > 0.001) {
|
| 694 |
-
requestAnimationFrame(trainLoop);
|
| 695 |
-
} else {
|
| 696 |
-
training = false;
|
| 697 |
-
}
|
| 698 |
-
}
|
| 699 |
-
|
| 700 |
-
// Update statistics
|
| 701 |
-
function updateStats() {
|
| 702 |
-
document.getElementById('epoch').textContent = epoch;
|
| 703 |
-
|
| 704 |
-
const loss = lossHistory.length > 0 ? lossHistory[lossHistory.length - 1] : 1;
|
| 705 |
-
document.getElementById('loss').textContent = loss.toFixed(4);
|
| 706 |
-
|
| 707 |
-
// Calculate accuracy
|
| 708 |
-
let correct = 0;
|
| 709 |
-
for (let i = 0; i < xorInputs.length; i++) {
|
| 710 |
-
const prediction = network ? network.predict(xorInputs[i]) : 0.5;
|
| 711 |
-
const rounded = Math.round(prediction);
|
| 712 |
-
if (rounded === xorTargets[i]) correct++;
|
| 713 |
-
}
|
| 714 |
-
const accuracy = (correct / xorInputs.length * 100).toFixed(0);
|
| 715 |
-
document.getElementById('accuracy').textContent = accuracy + '%';
|
| 716 |
-
|
| 717 |
-
// Add pulse animation on high accuracy
|
| 718 |
-
if (accuracy >= 100) {
|
| 719 |
-
document.getElementById('accuracy').parentElement.classList.add('pulse');
|
| 720 |
-
setTimeout(() => {
|
| 721 |
-
document.getElementById('accuracy').parentElement.classList.remove('pulse');
|
| 722 |
-
}, 500);
|
| 723 |
-
}
|
| 724 |
-
}
|
| 725 |
-
|
| 726 |
-
// Visualization functions
|
| 727 |
-
function drawNetwork() {
|
| 728 |
-
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
| 729 |
-
|
| 730 |
-
if (!network) return;
|
| 731 |
-
|
| 732 |
-
const layerSpacing = canvas.width / (network.layers.length + 1);
|
| 733 |
-
const neurons = [];
|
| 734 |
-
|
| 735 |
-
// Calculate neuron positions
|
| 736 |
-
for (let i = 0; i < network.layers.length; i++) {
|
| 737 |
-
neurons[i] = [];
|
| 738 |
-
const layerSize = network.layers[i];
|
| 739 |
-
const ySpacing = canvas.height / (layerSize + 1);
|
| 740 |
-
|
| 741 |
-
for (let j = 0; j < layerSize; j++) {
|
| 742 |
-
const x = layerSpacing * (i + 1);
|
| 743 |
-
const y = ySpacing * (j + 1);
|
| 744 |
-
neurons[i].push({ x, y });
|
| 745 |
-
}
|
| 746 |
-
}
|
| 747 |
-
|
| 748 |
-
// Draw connections
|
| 749 |
-
for (let i = 0; i < network.weights.length; i++) {
|
| 750 |
-
for (let j = 0; j < network.weights[i].length; j++) {
|
| 751 |
-
for (let k = 0; k < network.weights[i][j].length; k++) {
|
| 752 |
-
const weight = network.weights[i][j][k];
|
| 753 |
-
const opacity = Math.min(Math.abs(weight) / 2, 1);
|
| 754 |
-
|
| 755 |
-
ctx.beginPath();
|
| 756 |
-
ctx.moveTo(neurons[i][k].x, neurons[i][k].y);
|
| 757 |
-
ctx.lineTo(neurons[i+1][j].x, neurons[i+1][j].y);
|
| 758 |
-
|
| 759 |
-
if (weight > 0) {
|
| 760 |
-
ctx.strokeStyle = `rgba(76, 175, 80, ${opacity})`;
|
| 761 |
-
} else {
|
| 762 |
-
ctx.strokeStyle = `rgba(244, 67, 54, ${opacity})`;
|
| 763 |
-
}
|
| 764 |
-
|
| 765 |
-
ctx.lineWidth = Math.abs(weight) * 2;
|
| 766 |
-
ctx.stroke();
|
| 767 |
-
}
|
| 768 |
-
}
|
| 769 |
-
}
|
| 770 |
-
|
| 771 |
-
// Draw neurons
|
| 772 |
-
for (let i = 0; i < neurons.length; i++) {
|
| 773 |
-
for (let j = 0; j < neurons[i].length; j++) {
|
| 774 |
-
const neuron = neurons[i][j];
|
| 775 |
-
|
| 776 |
-
// Get activation value
|
| 777 |
-
let activation = 0;
|
| 778 |
-
if (network.activations[i] && network.activations[i][j] !== undefined) {
|
| 779 |
-
activation = network.activations[i][j];
|
| 780 |
-
}
|
| 781 |
-
|
| 782 |
-
const intensity = Math.min(activation * 255, 255);
|
| 783 |
-
|
| 784 |
-
ctx.beginPath();
|
| 785 |
-
ctx.arc(neuron.x, neuron.y, 15, 0, Math.PI * 2);
|
| 786 |
-
ctx.fillStyle = `rgb(${intensity}, ${intensity}, ${255})`;
|
| 787 |
-
ctx.fill();
|
| 788 |
-
ctx.strokeStyle = '#4CAF50';
|
| 789 |
-
ctx.lineWidth = 2;
|
| 790 |
-
ctx.stroke();
|
| 791 |
-
|
| 792 |
-
// Draw activation value for visible neurons
|
| 793 |
-
if (network.layers[i] <= 5 || i === 0 || i === network.layers.length - 1) {
|
| 794 |
-
ctx.fillStyle = '#fff';
|
| 795 |
-
ctx.font = '10px Arial';
|
| 796 |
-
ctx.textAlign = 'center';
|
| 797 |
-
ctx.textBaseline = 'middle';
|
| 798 |
-
ctx.fillText(activation.toFixed(2), neuron.x, neuron.y);
|
| 799 |
-
}
|
| 800 |
-
}
|
| 801 |
-
}
|
| 802 |
-
|
| 803 |
-
// Draw layer labels
|
| 804 |
-
ctx.fillStyle = '#888';
|
| 805 |
-
ctx.font = '14px Arial';
|
| 806 |
-
ctx.textAlign = 'center';
|
| 807 |
-
|
| 808 |
-
const labels = ['Input', 'Hidden 1', 'Hidden 2', 'Output'];
|
| 809 |
-
for (let i = 0; i < network.layers.length; i++) {
|
| 810 |
-
const x = layerSpacing * (i + 1);
|
| 811 |
-
ctx.fillText(labels[i], x, 30);
|
| 812 |
-
ctx.fillText(`(${network.layers[i]} neurons)`, x, 45);
|
| 813 |
-
}
|
| 814 |
-
|
| 815 |
-
// Draw XOR truth table
|
| 816 |
-
ctx.fillStyle = '#4CAF50';
|
| 817 |
-
ctx.font = '12px Arial';
|
| 818 |
-
ctx.textAlign = 'left';
|
| 819 |
-
ctx.fillText('XOR Truth Table:', 20, canvas.height - 80);
|
| 820 |
-
ctx.fillStyle = '#888';
|
| 821 |
-
ctx.fillText('0 XOR 0 = 0', 20, canvas.height - 60);
|
| 822 |
-
ctx.fillText('0 XOR 1 = 1', 20, canvas.height - 45);
|
| 823 |
-
ctx.fillText('1 XOR 0 = 1', 20, canvas.height - 30);
|
| 824 |
-
ctx.fillText('1 XOR 1 = 0', 20, canvas.height - 15);
|
| 825 |
-
|
| 826 |
-
// Show current predictions
|
| 827 |
-
if (network) {
|
| 828 |
-
ctx.fillStyle = '#4CAF50';
|
| 829 |
-
ctx.fillText('Network Output:', 150, canvas.height - 80);
|
| 830 |
-
ctx.fillStyle = '#888';
|
| 831 |
-
for (let i = 0; i < xorInputs.length; i++) {
|
| 832 |
-
const prediction = network.predict(xorInputs[i]);
|
| 833 |
-
const text = `${xorInputs[i][0]} XOR ${xorInputs[i][1]} = ${prediction.toFixed(3)}`;
|
| 834 |
-
ctx.fillText(text, 150, canvas.height - 60 + i * 15);
|
| 835 |
-
}
|
| 836 |
-
}
|
| 837 |
-
}
|
| 838 |
-
|
| 839 |
-
function drawLossChart() {
|
| 840 |
-
lossCtx.clearRect(0, 0, lossCanvas.width, lossCanvas.height);
|
| 841 |
-
|
| 842 |
-
if (lossHistory.length < 2) return;
|
| 843 |
-
|
| 844 |
-
// Find min and max for scaling
|
| 845 |
-
const maxLoss = Math.max(...lossHistory, 0.5);
|
| 846 |
-
const minLoss = 0;
|
| 847 |
-
|
| 848 |
-
// Draw axes
|
| 849 |
-
lossCtx.strokeStyle = '#444';
|
| 850 |
-
lossCtx.lineWidth = 1;
|
| 851 |
-
lossCtx.beginPath();
|
| 852 |
-
lossCtx.moveTo(40, 10);
|
| 853 |
-
lossCtx.lineTo(40, lossCanvas.height - 30);
|
| 854 |
-
lossCtx.lineTo(lossCanvas.width - 10, lossCanvas.height - 30);
|
| 855 |
-
lossCtx.stroke();
|
| 856 |
-
|
| 857 |
-
// Draw labels
|
| 858 |
-
lossCtx.fillStyle = '#888';
|
| 859 |
-
lossCtx.font = '12px Arial';
|
| 860 |
-
lossCtx.textAlign = 'right';
|
| 861 |
-
lossCtx.fillText(maxLoss.toFixed(3), 35, 15);
|
| 862 |
-
lossCtx.fillText('0', 35, lossCanvas.height - 30);
|
| 863 |
-
lossCtx.textAlign = 'center';
|
| 864 |
-
lossCtx.fillText('Loss over Time', lossCanvas.width / 2, lossCanvas.height - 10);
|
| 865 |
-
|
| 866 |
-
// Draw loss curve
|
| 867 |
-
lossCtx.strokeStyle = '#4CAF50';
|
| 868 |
-
lossCtx.lineWidth = 2;
|
| 869 |
-
lossCtx.beginPath();
|
| 870 |
-
|
| 871 |
-
const xStep = (lossCanvas.width - 50) / (lossHistory.length - 1);
|
| 872 |
-
const yScale = (lossCanvas.height - 50) / (maxLoss - minLoss);
|
| 873 |
-
|
| 874 |
-
for (let i = 0; i < lossHistory.length; i++) {
|
| 875 |
-
const x = 40 + i * xStep;
|
| 876 |
-
const y = lossCanvas.height - 30 - (lossHistory[i] - minLoss) * yScale;
|
| 877 |
-
|
| 878 |
-
if (i === 0) {
|
| 879 |
-
lossCtx.moveTo(x, y);
|
| 880 |
-
} else {
|
| 881 |
-
lossCtx.lineTo(x, y);
|
| 882 |
-
}
|
| 883 |
-
}
|
| 884 |
-
|
| 885 |
-
lossCtx.stroke();
|
| 886 |
-
|
| 887 |
-
// Draw current loss point
|
| 888 |
-
if (lossHistory.length > 0) {
|
| 889 |
-
const lastX = 40 + (lossHistory.length - 1) * xStep;
|
| 890 |
-
const lastY = lossCanvas.height - 30 - (lossHistory[lossHistory.length - 1] - minLoss) * yScale;
|
| 891 |
-
|
| 892 |
-
lossCtx.beginPath();
|
| 893 |
-
lossCtx.arc(lastX, lastY, 4, 0, Math.PI * 2);
|
| 894 |
-
lossCtx.fillStyle = '#4CAF50';
|
| 895 |
-
lossCtx.fill();
|
| 896 |
-
}
|
| 897 |
-
}
|
| 898 |
-
|
| 899 |
-
// Initialize
|
| 900 |
-
resetNetwork();
|
| 901 |
-
</script>
|
| 902 |
-
</body>
|
| 903 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|