Nurisslam commited on
Commit
160b148
·
verified ·
1 Parent(s): d0fdfef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -65
app.py CHANGED
@@ -1,70 +1,25 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
-
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
  )
62
 
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
-
68
-
69
  if __name__ == "__main__":
70
  demo.launch()
 
1
  import gradio as gr
2
+ from ultralytics import YOLO
3
+
4
+ # ---- Модельді жүктеу ----
5
+ # Алдымен алдын ала дайын YOLOv8 моделін жүктейміз (оны сен fine-tune жасайсың)
6
+ model = YOLO("yolov8n.pt") # өзіңнің "car_damage.pt" файлын қоясың
7
+
8
+ # ---- Predict функциясы ----
9
+ def detect_damage(image):
10
+ results = model(image)
11
+ # YOLO нәтижесін визуализация жасаймыз
12
+ annotated = results[0].plot() # numpy image
13
+ return annotated
14
+
15
+ # ---- Gradio интерфейс ----
16
+ demo = gr.Interface(
17
+ fn=detect_damage,
18
+ inputs=gr.Image(type="pil", label="Машина суретін жүктеңіз"),
19
+ outputs=gr.Image(type="numpy", label="Ақауы белгіленген сурет"),
20
+ title="🚗 Машина зақымын анықтау (Object Detection)",
21
+ description="ИИ машинаның қай бөлігі бұзылғанын рамкамен көрсетеді."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  )
23
 
 
 
 
 
 
 
24
  if __name__ == "__main__":
25
  demo.launch()