import os import logging import asyncio from huggingface_hub import hf_hub_download from llama_cpp import Llama logger = logging.getLogger("nexari.coder") BASE_DIR = "./models/coder" model = None # === OPTIMIZED FOR 2 vCPU: Qwen 2.5 Coder 3B (Q4_K_M) === # TECHNIQUE: Q6 (Heavy) -> Q4 (Fast). # Quality drop is negligible, but speed boosts by ~40%. REPO_ID = "Qwen/Qwen2.5-Coder-3B-Instruct-GGUF" FILENAME = "qwen2.5-coder-3b-instruct-q4_k_m.gguf" def load_model(local_dir: str = None): global model if not local_dir: local_dir = BASE_DIR try: os.makedirs(local_dir, exist_ok=True) path = os.path.join(local_dir, FILENAME) # Download (~1.7 GB instead of 2.8 GB) if not os.path.exists(path): logger.info(f"⬇️ Downloading Qwen 3B Coder (Fast Q4)...") hf_hub_download(repo_id=REPO_ID, filename=FILENAME, local_dir=local_dir) model = Llama( model_path=path, n_ctx=8192, n_threads=2, n_batch=512, # Batch size increased to ingest prompts faster verbose=False ) logger.info("✅ Coder Model Ready (Qwen 3B - Turbo Mode)") return model except Exception as e: logger.error(f"Coder Load Error: {e}") model = None async def load_model_async(): return await asyncio.to_thread(load_model)