Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ def install(package):
|
|
| 7 |
install("evaluate")
|
| 8 |
install("jiwer")
|
| 9 |
install("huggingface_hub")
|
| 10 |
-
install("gradio
|
| 11 |
install("bitsandbytes")
|
| 12 |
install("git+https://github.com/huggingface/transformers.git")
|
| 13 |
install("git+https://github.com/huggingface/peft.git")
|
|
@@ -17,8 +17,6 @@ install("safetensors")
|
|
| 17 |
install("torch")
|
| 18 |
install("xformers")
|
| 19 |
install("datasets")
|
| 20 |
-
install("stable-diffusion")
|
| 21 |
-
install("accelerate")
|
| 22 |
|
| 23 |
from transformers import AutoProcessor, AutoModelForCausalLM, BitsAndBytesConfig
|
| 24 |
import torch
|
|
@@ -132,7 +130,6 @@ from peft import (
|
|
| 132 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
|
| 133 |
from peft import LoraConfig, get_peft_model
|
| 134 |
|
| 135 |
-
|
| 136 |
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 137 |
|
| 138 |
class Social_Media_Captioner:
|
|
@@ -157,52 +154,58 @@ class Social_Media_Captioner:
|
|
| 157 |
|
| 158 |
|
| 159 |
def _load_model(self):
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
self.MODEL_NAME,
|
| 168 |
-
device_map = "auto",
|
| 169 |
-
trust_remote_code = True,
|
| 170 |
-
quantization_config = self.bnb_config
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
# Defining the tokenizers
|
| 174 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL_NAME)
|
| 175 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 176 |
-
|
| 177 |
-
if self.use_finetuned:
|
| 178 |
-
# LORA Config Model
|
| 179 |
-
self.lora_config = LoraConfig(
|
| 180 |
-
r=16,
|
| 181 |
-
lora_alpha=32,
|
| 182 |
-
target_modules=["query_key_value"],
|
| 183 |
-
lora_dropout=0.05,
|
| 184 |
-
bias="none",
|
| 185 |
-
task_type="CAUSAL_LM"
|
| 186 |
-
)
|
| 187 |
-
self.model = get_peft_model(self.model, self.lora_config)
|
| 188 |
-
|
| 189 |
-
# Fitting the adapters
|
| 190 |
-
self.peft_config = PeftConfig.from_pretrained(self.peft_model_name)
|
| 191 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 192 |
-
self.
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
trust_remote_code = True
|
| 197 |
)
|
| 198 |
-
self.model = PeftModel.from_pretrained(self.model, self.peft_model_name)
|
| 199 |
|
| 200 |
# Defining the tokenizers
|
| 201 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.
|
| 202 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
def inference(self, input_text: str, use_cached=True, cache_generation=True) -> str | None:
|
| 208 |
if not self.model_loaded:
|
|
@@ -246,7 +249,7 @@ class Social_Media_Captioner:
|
|
| 246 |
raise Exception("Enter a valid input text to generate a valid prompt")
|
| 247 |
|
| 248 |
return f"""
|
| 249 |
-
Convert the given image description to
|
| 250 |
Description: {input_text}
|
| 251 |
Caption:
|
| 252 |
""".strip()
|
|
@@ -295,18 +298,20 @@ class Captions:
|
|
| 295 |
image_description = self.image_to_text._generate_description(image, max_length=max_length_GIT)
|
| 296 |
captions = self.LLM.inference(image_description, use_cached=use_cached_LLM, cache_generation=cache_generation_LLM)
|
| 297 |
return captions
|
| 298 |
-
|
| 299 |
caption_generator = Captions()
|
| 300 |
|
| 301 |
import gradio as gr
|
| 302 |
|
| 303 |
def setup(image):
|
|
|
|
|
|
|
| 304 |
return caption_generator.generate_captions(image = image)
|
| 305 |
|
| 306 |
iface = gr.Interface(
|
| 307 |
fn=setup,
|
| 308 |
-
inputs=gr.
|
| 309 |
-
outputs=
|
| 310 |
)
|
| 311 |
|
| 312 |
iface.launch()
|
|
|
|
| 7 |
install("evaluate")
|
| 8 |
install("jiwer")
|
| 9 |
install("huggingface_hub")
|
| 10 |
+
install("gradio")
|
| 11 |
install("bitsandbytes")
|
| 12 |
install("git+https://github.com/huggingface/transformers.git")
|
| 13 |
install("git+https://github.com/huggingface/peft.git")
|
|
|
|
| 17 |
install("torch")
|
| 18 |
install("xformers")
|
| 19 |
install("datasets")
|
|
|
|
|
|
|
| 20 |
|
| 21 |
from transformers import AutoProcessor, AutoModelForCausalLM, BitsAndBytesConfig
|
| 22 |
import torch
|
|
|
|
| 130 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
|
| 131 |
from peft import LoraConfig, get_peft_model
|
| 132 |
|
|
|
|
| 133 |
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 134 |
|
| 135 |
class Social_Media_Captioner:
|
|
|
|
| 154 |
|
| 155 |
|
| 156 |
def _load_model(self):
|
| 157 |
+
try:
|
| 158 |
+
self.bnb_config = BitsAndBytesConfig(
|
| 159 |
+
load_in_4bit = True,
|
| 160 |
+
bnb_4bit_use_double_quant = True,
|
| 161 |
+
bnb_4bit_quant_type= "nf4",
|
| 162 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 163 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 165 |
+
self.MODEL_NAME,
|
| 166 |
+
device_map = "auto",
|
| 167 |
+
trust_remote_code = True,
|
| 168 |
+
quantization_config = self.bnb_config
|
|
|
|
| 169 |
)
|
|
|
|
| 170 |
|
| 171 |
# Defining the tokenizers
|
| 172 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL_NAME)
|
| 173 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 174 |
|
| 175 |
+
if self.use_finetuned:
|
| 176 |
+
# LORA Config Model
|
| 177 |
+
self.lora_config = LoraConfig(
|
| 178 |
+
r=16,
|
| 179 |
+
lora_alpha=32,
|
| 180 |
+
target_modules=["query_key_value"],
|
| 181 |
+
lora_dropout=0.05,
|
| 182 |
+
bias="none",
|
| 183 |
+
task_type="CAUSAL_LM"
|
| 184 |
+
)
|
| 185 |
+
self.model = get_peft_model(self.model, self.lora_config)
|
| 186 |
+
|
| 187 |
+
# Fitting the adapters
|
| 188 |
+
self.peft_config = PeftConfig.from_pretrained(self.peft_model_name)
|
| 189 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 190 |
+
self.peft_config.base_model_name_or_path,
|
| 191 |
+
return_dict = True,
|
| 192 |
+
quantization_config = self.bnb_config,
|
| 193 |
+
device_map= "auto",
|
| 194 |
+
trust_remote_code = True
|
| 195 |
+
)
|
| 196 |
+
self.model = PeftModel.from_pretrained(self.model, self.peft_model_name)
|
| 197 |
+
|
| 198 |
+
# Defining the tokenizers
|
| 199 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.peft_config.base_model_name_or_path)
|
| 200 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 201 |
+
|
| 202 |
+
self.model_loaded = True
|
| 203 |
+
print("Model Loaded successfully")
|
| 204 |
+
|
| 205 |
+
except Exception as e:
|
| 206 |
+
print(e)
|
| 207 |
+
self.model_loaded = False
|
| 208 |
+
|
| 209 |
|
| 210 |
def inference(self, input_text: str, use_cached=True, cache_generation=True) -> str | None:
|
| 211 |
if not self.model_loaded:
|
|
|
|
| 249 |
raise Exception("Enter a valid input text to generate a valid prompt")
|
| 250 |
|
| 251 |
return f"""
|
| 252 |
+
Convert the given image description to social media worthy metaphoric caption
|
| 253 |
Description: {input_text}
|
| 254 |
Caption:
|
| 255 |
""".strip()
|
|
|
|
| 298 |
image_description = self.image_to_text._generate_description(image, max_length=max_length_GIT)
|
| 299 |
captions = self.LLM.inference(image_description, use_cached=use_cached_LLM, cache_generation=cache_generation_LLM)
|
| 300 |
return captions
|
| 301 |
+
|
| 302 |
caption_generator = Captions()
|
| 303 |
|
| 304 |
import gradio as gr
|
| 305 |
|
| 306 |
def setup(image):
|
| 307 |
+
# Assuming `caption_generator.generate_captions` is your function to generate captions.
|
| 308 |
+
# This is just a placeholder for your actual caption generation logic.
|
| 309 |
return caption_generator.generate_captions(image = image)
|
| 310 |
|
| 311 |
iface = gr.Interface(
|
| 312 |
fn=setup,
|
| 313 |
+
inputs=gr.Image(type="pil", label="Upload Image"), # Updated usage here
|
| 314 |
+
outputs="text" # Simplified usage here
|
| 315 |
)
|
| 316 |
|
| 317 |
iface.launch()
|