Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Define the model architecture
|
| 7 |
+
class AddModel(nn.Module):
|
| 8 |
+
def __init__(self):
|
| 9 |
+
super(AddModel, self).__init__()
|
| 10 |
+
self.fc1 = nn.Linear(2, 32)
|
| 11 |
+
self.relu1 = nn.ReLU()
|
| 12 |
+
self.fc2 = nn.Linear(32, 64)
|
| 13 |
+
self.relu2 = nn.ReLU()
|
| 14 |
+
self.fc3 = nn.Linear(64, 1)
|
| 15 |
+
|
| 16 |
+
def forward(self, x):
|
| 17 |
+
x = self.relu1(self.fc1(x))
|
| 18 |
+
x = self.relu2(self.fc2(x))
|
| 19 |
+
x = self.fc3(x)
|
| 20 |
+
return x
|
| 21 |
+
|
| 22 |
+
# Load the model from a specified path
|
| 23 |
+
def load_model(model_path):
|
| 24 |
+
model = AddModel()
|
| 25 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
| 26 |
+
model.eval() # Set the model to evaluation mode
|
| 27 |
+
return model
|
| 28 |
+
|
| 29 |
+
# Function to make predictions
|
| 30 |
+
def predict_sum(model, x1, x2):
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
input_tensor = torch.tensor([[x1, x2]], dtype=torch.float32)
|
| 33 |
+
prediction = model(input_tensor)
|
| 34 |
+
return prediction.item()
|
| 35 |
+
|
| 36 |
+
# Streamlit app
|
| 37 |
+
def main():
|
| 38 |
+
st.title("Sum Predictor using Neural Network")
|
| 39 |
+
|
| 40 |
+
# Specify the path to your model
|
| 41 |
+
model_path = "./models/best_model.pth" # Update with your model path
|
| 42 |
+
if os.path.exists(model_path):
|
| 43 |
+
model = load_model(model_path)
|
| 44 |
+
st.success("Model loaded successfully.")
|
| 45 |
+
|
| 46 |
+
# User input for prediction
|
| 47 |
+
x1 = st.number_input("Enter the first number:", value=0.0)
|
| 48 |
+
x2 = st.number_input("Enter the second number:", value=0.0)
|
| 49 |
+
|
| 50 |
+
if st.button("Predict"):
|
| 51 |
+
predicted_sum = predict_sum(model, x1, x2)
|
| 52 |
+
st.write(f"The predicted sum of {x1} and {x2} is: {predicted_sum:.2f}")
|
| 53 |
+
else:
|
| 54 |
+
st.error("Model file not found. Please upload the model.")
|
| 55 |
+
|
| 56 |
+
if __name__ == "__main__":
|
| 57 |
+
main()
|