Leo Liu
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassifica
|
|
| 4 |
import torchaudio
|
| 5 |
import os
|
| 6 |
import jieba
|
|
|
|
| 7 |
|
| 8 |
# Device setup: automatically selects CUDA or CPU
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -31,7 +32,7 @@ def transcribe_audio(audio_path):
|
|
| 31 |
return " ".join(results)
|
| 32 |
return pipe(audio_path)["text"]
|
| 33 |
|
| 34 |
-
# Load sentiment analysis model
|
| 35 |
sentiment_pipe = pipeline("text-classification", model="Leo0129/CustomModel-multilingual-sentiment-analysis", device=device)
|
| 36 |
|
| 37 |
# Text splitting function (using jieba for Chinese text)
|
|
@@ -91,14 +92,22 @@ def main():
|
|
| 91 |
st.markdown("""
|
| 92 |
<div class="header">
|
| 93 |
<h1 style='margin:0;'>ποΈ Customer Service Quality Analyzer</h1>
|
| 94 |
-
<p style='color: white; font-size: 1.2rem;'>Evaluate the service quality with simple
|
| 95 |
</div>
|
| 96 |
""", unsafe_allow_html=True)
|
| 97 |
|
|
|
|
|
|
|
|
|
|
| 98 |
# Audio file uploader
|
| 99 |
-
uploaded_file = st.file_uploader("ππ» Upload your
|
| 100 |
|
| 101 |
if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
st.audio(uploaded_file, format="audio/wav")
|
| 103 |
temp_audio_path = "uploaded_audio.wav"
|
| 104 |
with open(temp_audio_path, "wb") as f:
|
|
@@ -108,16 +117,24 @@ def main():
|
|
| 108 |
status_container = st.empty()
|
| 109 |
|
| 110 |
# Step 1: Audio transcription
|
| 111 |
-
status_container.info("π **Step 1
|
| 112 |
-
|
|
|
|
| 113 |
progress_bar.progress(50)
|
| 114 |
st.write("**Transcript:**", transcript)
|
| 115 |
|
| 116 |
# Step 2: Sentiment Analysis
|
| 117 |
-
status_container.info("π§ββοΈ **Step 2
|
| 118 |
quality_rating = rate_quality(transcript)
|
| 119 |
progress_bar.progress(100)
|
| 120 |
-
st.write("**Sentiment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
os.remove(temp_audio_path)
|
| 123 |
|
|
|
|
| 4 |
import torchaudio
|
| 5 |
import os
|
| 6 |
import jieba
|
| 7 |
+
import magic
|
| 8 |
|
| 9 |
# Device setup: automatically selects CUDA or CPU
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 32 |
return " ".join(results)
|
| 33 |
return pipe(audio_path)["text"]
|
| 34 |
|
| 35 |
+
# Load sentiment analysis model
|
| 36 |
sentiment_pipe = pipeline("text-classification", model="Leo0129/CustomModel-multilingual-sentiment-analysis", device=device)
|
| 37 |
|
| 38 |
# Text splitting function (using jieba for Chinese text)
|
|
|
|
| 92 |
st.markdown("""
|
| 93 |
<div class="header">
|
| 94 |
<h1 style='margin:0;'>ποΈ Customer Service Quality Analyzer</h1>
|
| 95 |
+
<p style='color: white; font-size: 1.2rem;'>Evaluate the service quality with simple uploading!</p>
|
| 96 |
</div>
|
| 97 |
""", unsafe_allow_html=True)
|
| 98 |
|
| 99 |
+
# Step-by-step instructions
|
| 100 |
+
st.markdown("π€ **Step 1:** Please upload your Cantonese customer service audio file")
|
| 101 |
+
|
| 102 |
# Audio file uploader
|
| 103 |
+
uploaded_file = st.file_uploader("ππ» Upload your audio file here...", type=["wav", "mp3", "flac"])
|
| 104 |
|
| 105 |
if uploaded_file is not None:
|
| 106 |
+
file_type = magic.from_buffer(uploaded_file.getbuffer(), mime=True)
|
| 107 |
+
if not file_type.startswith("audio/"):
|
| 108 |
+
st.error("β οΈ Sorry, the uploaded file format is not supported. Please upload an audio file in .wav, .mp3, or .flac format.")
|
| 109 |
+
return
|
| 110 |
+
|
| 111 |
st.audio(uploaded_file, format="audio/wav")
|
| 112 |
temp_audio_path = "uploaded_audio.wav"
|
| 113 |
with open(temp_audio_path, "wb") as f:
|
|
|
|
| 117 |
status_container = st.empty()
|
| 118 |
|
| 119 |
# Step 1: Audio transcription
|
| 120 |
+
status_container.info("π **Step 1:** Transcribing audio, please wait...")
|
| 121 |
+
with st.spinner('π Transcribing, please wait...'):
|
| 122 |
+
transcript = transcribe_audio(temp_audio_path)
|
| 123 |
progress_bar.progress(50)
|
| 124 |
st.write("**Transcript:**", transcript)
|
| 125 |
|
| 126 |
# Step 2: Sentiment Analysis
|
| 127 |
+
status_container.info("π§ββοΈ **Step 2:** Analyzing sentiment, please wait...")
|
| 128 |
quality_rating = rate_quality(transcript)
|
| 129 |
progress_bar.progress(100)
|
| 130 |
+
st.write("**Sentiment Analysis Result:**", quality_rating)
|
| 131 |
+
|
| 132 |
+
# Download analysis results
|
| 133 |
+
result_text = f"Transcript:\n{transcript}\n\nSentiment Analysis Result: {quality_rating}"
|
| 134 |
+
st.download_button(label="π₯ Download Analysis Report", data=result_text, file_name="analysis_report.txt")
|
| 135 |
+
|
| 136 |
+
# Customer support info
|
| 137 |
+
st.markdown("βIf you encounter any issues, please contact customer support: π§ **support@hellotoby.com**")
|
| 138 |
|
| 139 |
os.remove(temp_audio_path)
|
| 140 |
|