File size: 1,093 Bytes
d97a439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import time

import pandas as pd
import torch
import torch.nn.functional as F
from tqdm import tqdm
from transformers import AutoModel, AutoTokenizer


class Embedder:
    def __init__(self, path):
        self.model_name_or_path = path
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
        self.model = AutoModel.from_pretrained(
            self.model_name_or_path, trust_remote_code=True
        )
        self.model.to(self.device)

    def generate_embedding(self, text):
        inputs = self.tokenizer(
            text, max_length=8192, padding=True, truncation=True, return_tensors="pt"
        )
        inputs = {key: value.to(self.device) for key, value in inputs.items()}
        with torch.no_grad():
            outputs = self.model(**inputs)
        dimension = 768
        embeddings = outputs.last_hidden_state[:, 0][:dimension]
        normalized_embeddings = F.normalize(embeddings, p=2, dim=1)
        return normalized_embeddings.squeeze().cpu().numpy()