File size: 50,127 Bytes
1172f79 2a26ed2 1172f79 2a26ed2 1172f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 |
# Science Storyteller - Learning Guide
> **For developers new to async Python, OOP, and MCP protocol**
> A step-by-step guide to understanding the Science Storyteller codebase
---
## π Table of Contents
0. [Architecture](#architecture)
1. [Learning Philosophy](#learning-philosophy)
2. [Object-Oriented Programming Basics](#object-oriented-programming-basics)
3. [Async/Await Deep Dive](#asyncawait-deep-dive)
4. [Module-by-Module Learning Path](#module-by-module-learning-path)
5. [Hands-On Exercises](#hands-on-exercises)
6. [Common Patterns Explained](#common-patterns-explained)
7. [Debugging Tips](#debugging-tips)
8. [Further Resources](#further-resources)
9. [Testing Strategy](#-testing-strategy)
---
## Architecture
This diagram shows how a user request flows through the system.
```mermaid
graph TD
subgraph User Interface
A[Gradio UI]
end
subgraph Orchestration Layer
B(app.py: ScienceStoryteller)
end
subgraph Agent Layer
C[agents/research_agent.py]
D[agents/analysis_agent.py]
E[agents/audio_agent.py]
end
subgraph Tool Layer
F(mcp_tools/arxiv_tool.py)
G(mcp_tools/llm_tool.py)
H(ElevenLabs API)
end
subgraph External Services
I[arXiv MCP Server]
J[Anthropic Claude API]
K[ElevenLabs TTS Service]
end
A -- User Input (Topic) --> B
B -- 1. search(topic) --> C
C -- 2. search_papers(query) --> F
F -- 3. call_tool --> I
I -- 4. Paper Results --> F
F -- 5. Papers --> C
C -- 6. Papers --> B
B -- 7. summarize_and_script(paper) --> D
D -- 8. summarize_paper(paper) --> G
G -- 9. API Call --> J
J -- 10. Summary --> G
G -- 11. Summary --> D
D -- 12. Script --> B
B -- 13. text_to_speech(script) --> E
E -- 14. API Call --> H
H -- 15. API Call --> K
K -- 16. Audio MP3 --> H
H -- 17. Audio File Path --> E
E -- 18. Audio Path --> B
B -- 19. Results (Summary, Audio, etc.) --> A
```
---
## Python Logging Module
### What is Logging?
Logging is Python's built-in system for tracking events, debugging, and monitoring your application. It's much better than using `print()` statements for debugging.
### Basic Setup
```python
import logging
# Create a logger instance specific to this module
logger = logging.getLogger(__name__)
# Configure logging to display messages
logging.basicConfig(
level=logging.INFO, # Show INFO and above (INFO, WARNING, ERROR, CRITICAL)
format='%(levelname)s - %(name)s - %(message)s'
)
# Now you can log messages
logger.info("Audio processor functions module loaded.")
```
### Why Use `__name__` with Logger?
**Benefits of `getLogger(__name__)`:**
1. **Hierarchical organization**: If your code is imported as a module (like `utils.audio_processor`), the logger name will be `"utils.audio_processor"` instead of `"__main__"`. This creates a logger hierarchy that helps organize logs from different parts of your app.
2. **Filtering by module**: You can configure different log levels for different parts of your application:
```python
logging.getLogger("agents").setLevel(logging.DEBUG) # Verbose for agents
logging.getLogger("utils").setLevel(logging.WARNING) # Quiet for utils
```
3. **Identifies source**: In log output, you can see exactly which module generated each message, making debugging much easier.
4. **Best practice**: Prevents logger name conflicts and follows Python conventions.
### Log Levels
From least to most severe:
| Level | When to Use | Example |
|-------|-------------|---------|
| `DEBUG` | Detailed diagnostic information | `logger.debug(f"Variable x = {x}")` |
| `INFO` | General informational messages | `logger.info("Processing started")` |
| `WARNING` | Something unexpected, but not an error | `logger.warning("Cache miss, fetching from API")` |
| `ERROR` | An error occurred, but app can continue | `logger.error(f"Failed to load file: {e}")` |
| `CRITICAL` | Serious error, app may crash | `logger.critical("Database connection lost!")` |
### Why Logging Doesn't Show by Default
**The problem:** By default, loggers only show messages at WARNING level and above. Your `logger.info()` calls are ignored!
**The solution:** Configure logging with `basicConfig()` to set the minimum level:
```python
logging.basicConfig(level=logging.INFO) # Now INFO messages will appear
```
### Format String Explained
```python
format='%(levelname)s - %(name)s - %(message)s'
```
This creates output like:
```
INFO - __main__ - Audio processor functions module loaded.
```
- `%(levelname)s` β Log level (INFO, ERROR, etc.)
- `%(name)s` β Logger name (from `__name__`)
- `%(message)s` β Your actual message
**Note:** You can add timestamps with `%(asctime)s` if you need them, but for simple learning it's cleaner without.
### Practical Example
```python
import logging
logger = logging.getLogger(__name__)
def process_audio(file_path):
logger.debug(f"Starting audio processing for: {file_path}") # Only in DEBUG mode
try:
# Process the file
logger.info(f"Successfully processed: {file_path}") # Normal operation
return True
except FileNotFoundError:
logger.error(f"File not found: {file_path}") # Error, but continue
return False
except Exception as e:
logger.critical(f"Critical error processing {file_path}: {e}") # Serious problem
raise
```
### Why Use Logging Instead of Print?
| Feature | `print()` | `logging` |
|---------|-----------|-----------|
| **Control output** | β Always prints | β
Can turn on/off by level |
| **Timestamps** | β Manual | β
Automatic |
| **File output** | β Manual redirection | β
Built-in handlers |
| **Severity levels** | β No distinction | β
DEBUG, INFO, WARNING, etc. |
| **Production-ready** | β Need to remove/comment | β
Just change log level |
| **Module identification** | β Manual | β
Automatic with `__name__` |
### In Your Science Storyteller Project
You'll use logging to track:
- Which research papers were retrieved
- API call successes/failures
- Processing steps (search β summarize β TTS)
- Errors during workflow
- Performance timing
**Example from your project:**
```python
logger.info(f"Searching for papers on topic: {topic}")
logger.warning("No papers found, trying fallback query")
logger.error(f"API call failed: {e}")
```
---
## Working with File Paths: `pathlib.Path`
### What is `pathlib`?
`pathlib` is Python's modern, object-oriented way to work with file system paths. It was introduced in **Python 3.4** (2014) and is now the recommended approach for handling files and directories.
### Why Use `Path` Instead of Strings?
**Old way (strings and `os.path`):**
```python
import os
path = "/home/user/audio.mp3"
if os.path.exists(path):
dirname = os.path.dirname(path)
basename = os.path.basename(path)
new_path = os.path.join(dirname, "new_audio.mp3")
```
**New way (`pathlib.Path`):**
```python
from pathlib import Path
path = Path("/home/user/audio.mp3")
if path.exists():
dirname = path.parent
basename = path.name
new_path = path.parent / "new_audio.mp3" # Use / operator!
```
**Benefits:**
- β
More readable and intuitive
- β
Works across Windows/Mac/Linux automatically
- β
Chainable methods
- β
Less error-prone than string concatenation
- β
Object-oriented design
### Creating Path Objects
```python
from pathlib import Path
# From a string
p = Path("/home/user/app/assets/audio/test.mp3")
# From current directory
p = Path.cwd() # Current working directory. It does not need input path.
# From home directory
p = Path.home() # User's home directory (~)
# Relative paths
p = Path("./assets/audio")
```
### Path Properties and Methods
```python
from pathlib import Path
p = Path("/home/user/app/assets/audio/podcast_123.mp3")
# Check existence and type
p.exists() # True/False - does it exist?
p.is_file() # True/False - is it a file?
p.is_dir() # True/False - is it a directory?
# Get path components
p.name # 'podcast_123.mp3' - filename with extension
p.stem # 'podcast_123' - filename without extension
p.suffix # '.mp3' - file extension
p.parent # Path('/home/user/app/assets/audio') - parent directory
p.parts # ('/', 'home', 'user', 'app', 'assets', 'audio', 'podcast_123.mp3')
# Path conversion
str(p) # Convert Path to string
p.absolute() # Get absolute path
p.resolve() # Resolve symlinks and make absolute
```
### Common Operations
**1. Check if file exists:**
```python
path = Path("myfile.txt")
if path.exists():
print("File found!")
```
**2. Create directories:**
```python
audio_dir = Path("./assets/audio")
audio_dir.mkdir(parents=True, exist_ok=True)
# parents=True: creates parent directories if needed
# exist_ok=True: doesn't raise error if already exists
```
**3. Join paths (the smart way):**
```python
base = Path("./assets")
audio_file = base / "audio" / "test.mp3" # Use / operator!
# Result: Path('./assets/audio/test.mp3')
# Works with strings too!
file_path = base / "audio" / f"podcast_{123}.mp3"
```
**4. Find files (glob patterns):**
```python
audio_dir = Path("./assets/audio")
# All MP3 files in directory
mp3_files = list(audio_dir.glob("*.mp3"))
# All files recursively
all_files = list(audio_dir.glob("**/*"))
# Specific pattern
podcasts = list(audio_dir.glob("podcast_*.mp3"))
```
**5. Read and write files:**
```python
path = Path("data.txt")
# Write text
path.write_text("Hello, world!")
# Read text
content = path.read_text()
# Write bytes (for binary files)
path.write_bytes(b'\x89PNG...')
# Read bytes
data = path.read_bytes()
```
**6. Get file metadata:**
```python
path = Path("myfile.txt")
stats = path.stat()
size_bytes = stats.st_size
modified_time = stats.st_mtime
```
### Real Example from Your Project
From `utils/audio_processor.py`:
```python
def process_audio_file(audio_path: str) -> Optional[str]:
"""Validate an audio file using Path."""
# Convert string to Path object
path = Path(audio_path)
# Check if file exists
if not path.exists():
logger.error(f"Audio file not found: {audio_path}")
return None
# Check file extension
if not path.suffix.lower() in ['.mp3', '.wav', '.ogg']:
logger.error(f"Invalid audio format: {path.suffix}")
return None
# Convert back to string for return
return str(path)
```
**Why this is better than strings:**
- `path.exists()` is clearer than `os.path.exists(audio_path)`
- `path.suffix` is simpler than manually parsing the extension
- Cross-platform compatible (Windows uses `\`, Unix uses `/`)
- Type-safe with IDE autocomplete
### Advanced Example: Cleanup Old Files
```python
from pathlib import Path
def cleanup_old_files(directory: str, max_files: int = 10):
"""Remove oldest audio files, keeping only max_files."""
dir_path = Path(directory)
if not dir_path.exists():
return
# Get all MP3 files sorted by modification time
audio_files = sorted(
dir_path.glob('*.mp3'), # Find all MP3s
key=lambda p: p.stat().st_mtime, # Sort by modified time
reverse=True # Newest first
)
# Remove oldest files beyond max_files
for old_file in audio_files[max_files:]:
old_file.unlink() # Delete the file
logger.info(f"Removed old file: {old_file}")
```
### Path Version History
- **Python 3.4** (2014): `pathlib` introduced
- **Python 3.5** (2015): Bug fixes and improvements
- **Python 3.6+** (2016+): Standard library functions accept `Path` objects
**Backward compatibility:** If you need to support Python 2.7 or 3.3, use `pathlib2` package. But for modern projects (like yours), just use built-in `pathlib`.
### Quick Reference Table
| Task | Old Way (`os.path`) | New Way (`pathlib.Path`) |
|------|---------------------|--------------------------|
| Check exists | `os.path.exists(path)` | `Path(path).exists()` |
| Get filename | `os.path.basename(path)` | `Path(path).name` |
| Get directory | `os.path.dirname(path)` | `Path(path).parent` |
| Join paths | `os.path.join(a, b)` | `Path(a) / b` |
| Get extension | Manual string split | `Path(path).suffix` |
| Create directory | `os.makedirs(path)` | `Path(path).mkdir(parents=True)` |
| List files | `os.listdir(path)` | `Path(path).iterdir()` |
| Read file | `open(path).read()` | `Path(path).read_text()` |
### When to Convert Between Path and String
**Rule of thumb:**
- Use `Path` objects internally for all file operations
- Convert to `str()` only when:
- Passing to APIs that don't accept Path
- Displaying to user
- Storing in JSON or database
```python
# Internal: use Path
path = Path("./assets/audio") / "file.mp3"
# External API: convert to string
audio_url = upload_to_api(str(path))
# Display to user: convert to string
print(f"Audio saved to: {path}") # Prints nicely automatically
```
---
## Python Function Basics
Functions are the primary way to group code into reusable blocks. Let's break down a function from our codebase: `utils/audio_processor.py`.
```python
def process_audio_file(audio_path: str) -> Optional[str]:
"""
Process and validate an audio file.
Args:
audio_path: Path to audio file
Returns:
Validated path or None if invalid
"""
# ... function body ...
return str(path)
```
### Anatomy of a Function
Let's look at each part of the function definition:
1. **`def` keyword**: This signals the start of a function definition.
2. **Function Name**: `process_audio_file`. This is how you'll call the function later. It should be descriptive and follow the `snake_case` convention (all lowercase with underscores).
3. **Parameters (in `()`)**: `(audio_path: str)`. These are the inputs the function accepts.
- `audio_path`: The name of the parameter.
- `: str`: This is a **type hint**. It tells developers that this function expects `audio_path` to be a string. It helps with code readability and catching errors.
4. **Return Type Hint**: `-> Optional[str]`. This indicates what the function will return.
- `Optional[str]` means the function can return either a `str` (string) or `None`. This is very useful for functions that might not always have a valid result to give back.
5. **Docstring**: The triple-quoted string `"""..."""` right after the definition. It explains the function's purpose, arguments (`Args`), and return value (`Returns`). This is essential for documentation.
6. **Function Body**: The indented code block below the definition. This is where the function's logic is implemented.
7. **`return` statement**: This keyword exits the function and passes back a value to whoever called it.
### Why Use Functions?
- **Reusability**: Write code once and use it many times.
- **Modularity**: Break down complex problems into smaller, manageable pieces.
- **Readability**: Well-named functions make code easier to understand.
---
## Learning Philosophy
### Why Learn Module-by-Module?
**Bottom-up approach** is recommended for this project:
1. Start with simple utilities (pure Python functions)
2. Progress to MCP tools (understand protocol basics)
3. Study agents (business logic and coordination)
4. Finally tackle orchestration (integration)
**Benefits:**
- β
Build confidence with simple concepts first
- β
Understand dependencies before integration
- β
Easier to debug when you know each piece
- β
Can test components independently
### Learning vs Building Trade-off
For a hackathon project, you need to balance:
- **Deep understanding**: Takes time, prevents bugs
- **Quick delivery**: Ship working product by deadline
**Recommended approach for this project:**
- **Week 1**: Deep dive into 2-3 core modules
- **Week 2**: Implement and integrate
- **Week 3**: Test, polish, document
---
## Object-Oriented Programming Basics
### What is a Class?
A **class** is a blueprint for creating objects. Think of it as a cookie cutter.
```python
class ScienceStoryteller: # The blueprint
"""Main orchestrator for the Science Storyteller workflow."""
```
### Creating Objects (Instantiation)
```python
# Creating an object from the class
storyteller = ScienceStoryteller() # Now you have a specific storyteller object
```
### The `__init__` Method (Constructor)
The `__init__` method is called **automatically** when you create a new object.
```python
class ScienceStoryteller:
def __init__(self): # Runs when ScienceStoryteller() is called
self.research_agent = ResearchAgent()
self.analysis_agent = AnalysisAgent()
self.audio_agent = AudioAgent()
```
**Purpose:** Set up the initial state of your object.
**When it runs:**
```python
storyteller = ScienceStoryteller() # __init__ runs here automatically
```
### Understanding `self`
`self` refers to **this particular object instance**.
```python
class ScienceStoryteller:
def __init__(self):
self.research_agent = ResearchAgent() # Attach to THIS object
async def process_topic(self, topic: str):
papers = await self.research_agent.search(topic) # Use THIS object's agent
```
**Why `self`?** So each object can have its own separate data.
```python
storyteller1 = ScienceStoryteller() # Has its own research_agent
storyteller2 = ScienceStoryteller() # Has a different research_agent
```
### Attributes (Instance Variables)
**Attributes** store data that belongs to an object.
```python
self.research_agent = ResearchAgent() # This is an attribute
self.analysis_agent = AnalysisAgent() # This is an attribute
```
**Accessing attributes:**
```python
async def process_topic(self, topic: str):
# Use the attributes we created in __init__
papers = await self.research_agent.search(topic)
best_paper = await self.analysis_agent.select_best(papers, topic)
```
### Methods (Functions in a Class)
**Methods** define what an object can **do**.
```python
class ScienceStoryteller:
async def process_topic(self, topic: str): # This is a method
"""Process a research topic into a podcast."""
# ... implementation ...
def _format_paper_info(self, paper: dict) -> str: # Another method
"""Format paper metadata for display."""
# ... implementation ...
```
**Key points:**
- First parameter is always `self`
- Called using dot notation: `storyteller.process_topic("AI")`
- Can access attributes: `self.research_agent`
### Public vs Private Naming Convention
```python
def process_topic(self, topic): # Public - no underscore
"""Meant to be called from outside the class."""
def _format_paper_info(self, paper): # Private - starts with _
"""Internal helper, not meant to be called externally."""
```
**Convention (not enforced):**
- `method_name` β Public, part of the API
- `_method_name` β Private, internal use only
### Complete Example
```python
class ScienceStoryteller:
"""Main orchestrator for the Science Storyteller workflow."""
# Constructor - runs when object is created
def __init__(self):
self.research_agent = ResearchAgent() # Attribute
self.analysis_agent = AnalysisAgent() # Attribute
self.audio_agent = AudioAgent() # Attribute
# Public method - main workflow
async def process_topic(self, topic: str):
papers = await self.research_agent.search(topic) # Use attribute
best_paper = await self.analysis_agent.select_best(papers)
paper_info = self._format_paper_info(best_paper) # Call private method
return paper_info
# Private method - internal helper
def _format_paper_info(self, paper: dict) -> str:
return f"**Title:** {paper.get('title', 'Unknown')}"
# Usage
storyteller = ScienceStoryteller() # Create object (__init__ runs)
result = await storyteller.process_topic("AlphaFold") # Call method
```
### Quick Reference
| Concept | Syntax | Purpose |
|---------|--------|---------|
| **Class** | `class ClassName:` | Blueprint for objects |
| **Object** | `obj = ClassName()` | Instance created from class |
| **Constructor** | `def __init__(self):` | Initialize object state |
| **Self** | `self.attribute` | Reference to current object |
| **Attribute** | `self.name = value` | Data stored in object |
| **Method** | `def method(self, args):` | Function belonging to class |
| **Public** | `def method(self):` | External API |
| **Private** | `def _method(self):` | Internal helper |
---
## Async/Await Deep Dive
### Why Async? The Three Use Cases
Based on [RealPython's async guide](https://realpython.com/async-io-python/):
1. **Writing pausable/resumable functions**
2. **Managing I/O-bound tasks** (network, files, databases)
3. **Improving performance** (handle multiple tasks concurrently)
**Science Storyteller uses all three!**
### The Problem: Blocking I/O
**Without async (blocking):**
```python
def process_topic_sync(topic):
papers = requests.get("arxiv_api") # βΈοΈ BLOCKS for 5 seconds
summary = requests.post("claude_api") # βΈοΈ BLOCKS for 10 seconds
audio = requests.post("elevenlabs_api") # βΈοΈ BLOCKS for 60 seconds
return results # Total: 75 seconds of BLOCKING
# During blocking:
# β UI freezes
# β Progress bar can't update
# β Other users can't be served
# β Event loop is stuck
```
**With async (non-blocking):**
```python
async def process_topic(topic):
papers = await arxiv_tool.search() # βΈοΈ Yields control for 5 seconds
summary = await llm_tool.summarize() # βΈοΈ Yields control for 10 seconds
audio = await audio_tool.convert() # βΈοΈ Yields control for 60 seconds
return results # Total: 75 seconds, but non-blocking
# During await:
# β
UI stays responsive
# β
Progress bar updates
# β
Other users can be served
# β
Event loop continues running
```
### Visualizing Blocking vs. Async
**Blocking (Sequential) Execution:**
```
Request 1: [--arxiv--|----claude----|----------------audio----------------|]
Request 2: [--arxiv--|----claude----|---...
Time -----> 0s 5s 15s 75s 80s 90s
```
- The UI is frozen for the entire 75s duration of Request 1.
- Request 2 must wait for Request 1 to completely finish.
**Async (Concurrent) Execution:**
```
Request 1: [--arxiv--] ... [----claude----] ... [----------------audio----------------]
Request 2: [--arxiv--] ... [----claude----] ... [----------------audio----------------]
Time -----> 0s 1s 5s 6s 15s 16s 75s
```
- When Request 1 `await`s `arxiv`, the event loop is free to start Request 2.
- Both requests run concurrently, sharing time during I/O waits. The UI remains responsive throughout.
### How Async Works: The Event Loop
```
βββββββββββββββββββββββββββββββββββββββββββ
β Python Asyncio Event Loop β
β (Single thread, multiple tasks) β
βββββββββββββββββββββββββββββββββββββββββββ
β β β
Task A Task B Task C
(User 1 req) (User 2 req) (User 3 req)
```
**When `await` is hit:**
1. Function **pauses** at that line
2. Control **returns** to the event loop
3. Event loop **runs other code** (updates UI, handles requests)
4. When I/O completes, function **resumes** from where it paused
### Single VM, Multiple Users
**Key insight:** On Hugging Face Spaces, **all users share one Python process**.
```
Hugging Face Space (Single VM)
ββ Python Process (port 7860)
β ββ Event Loop
β ββ Task: User A (paused at await)
β ββ Task: User B (paused at await)
β ββ Task: User C (paused at await)
```
**Without async (sequential):**
```
User A: 0-75s (completes at 75s)
User B: 75-150s (WAITS 75s, then runs 75s = 150s total)
User C: 150-225s (WAITS 150s, then runs 75s = 225s total)
```
**With async (concurrent):**
```
User A: 0-75s (completes at 75s)
User B: 1-76s (starts 1s later, runs concurrently = 76s total)
User C: 2-77s (starts 2s later, runs concurrently = 77s total)
```
### Performance Comparison
| Metric | Without Async | With Async |
|--------|--------------|------------|
| **User A wait** | 75s | 75s |
| **User B wait** | 150s | ~76s |
| **User C wait** | 225s | ~77s |
| **UI responsiveness** | Frozen | Live updates |
| **Progress tracking** | Can't update | Works |
| **Concurrent users** | Sequential | Interleaved |
### Gradio + Async Integration
Gradio uses **FastAPI** internally, which is async-native:
```python
# Gradio internals (simplified)
from fastapi import FastAPI
app = FastAPI()
@app.post("/api/predict")
async def predict(request):
result = await your_gradio_function(request.data)
return result
```
**Why this matters:**
- `gr.Progress()` only works with async (sends WebSocket updates)
- Gradio's event loop can handle multiple users
- Your async functions integrate seamlessly
### Async Syntax Rules
**Defining async functions:**
```python
async def my_function(): # Note the 'async' keyword
result = await some_async_operation()
return result
```
**Calling async functions:**
```python
# From another async function:
result = await my_function()
# From synchronous code:
import asyncio
result = asyncio.run(my_function())
```
**Common mistake:**
```python
# β Wrong - missing await
async def process():
result = some_async_function() # This returns a coroutine, not the result!
# β
Correct - with await
async def process():
result = await some_async_function() # This waits and gets the actual result
```
### The Async Chain in Science Storyteller
```
app.py: process_topic (async)
β await
agents/research_agent.py: search (async)
β await
mcp_tools/arxiv_tool.py: search_papers (async)
β await
session.call_tool() (MCP I/O)
β
[Network request to arXiv server]
```
**Every step must be async** because:
- MCP communication uses async I/O
- Can't `await` inside a non-async function
- Event loop requires async all the way up
---
## Module-by-Module Learning Path
### Level 1: Foundation (Start Here)
#### 1. `utils/audio_processor.py`
**What it does:** File system operations for audio files
**Key concepts:**
- Creating directories with `Path.mkdir()`
- Checking file sizes with `os.path.getsize()`
- Working with file paths
**Learning exercise:**
```python
from utils.audio_processor import ensure_audio_dir, get_file_size_mb
# Create the audio directory
ensure_audio_dir()
# Check size of a file (if it exists)
# size = get_file_size_mb("assets/audio/podcast_123.mp3")
```
**What to look for:**
- How does it handle file paths in a cross-platform way (`pathlib.Path`)?
- The use of `exist_ok=True` to prevent errors.
- Simple, pure functions that have no side effects other than interacting with the filesystem.
**Questions to answer:**
- Why use `Path` instead of strings for file paths?
- What happens if the directory already exists?
- How is file size converted from bytes to MB?
---
#### 2. `utils/script_formatter.py`
**What it does:** Clean and format podcast scripts for TTS
**Key concepts:**
- String manipulation (`strip()`, `replace()`)
- Regular expressions (if used)
- Estimating audio duration from text
**Learning exercise:**
```python
from utils.script_formatter import format_podcast_script, estimate_duration
script = """
Hello! This is a test.
With extra spaces and newlines.
"""
cleaned = format_podcast_script(script)
duration = estimate_duration(cleaned)
print(f"Cleaned: {cleaned}")
print(f"Duration: {duration} seconds")
```
**What to look for:**
- How simple string methods (`.strip()`, `.replace()`) are used for cleaning.
- The logic for `estimate_duration`: it's a heuristic, not an exact calculation.
- This is another example of pure functions that are easy to test.
**Questions to answer:**
- How does text length relate to audio duration?
- What characters need to be cleaned for TTS?
- Why estimate duration before generating audio?
---
### Level 2: MCP Tools (Core Hackathon Requirement)
#### 3. `mcp_tools/arxiv_tool.py`
**What it does:** Connects to arXiv MCP server to search papers
**Key concepts:**
- Model Context Protocol (MCP)
- Stdio transport (stdin/stdout communication)
- Async context managers (`__aenter__`, `__aexit__`)
- JSON-RPC messaging
**Important code sections:**
**Connection setup:**
```python
server_params = StdioServerParameters(
command="npx",
args=["-y", "@blindnotation/arxiv-mcp-server"],
env=None
)
self.exit_stack = stdio_client(server_params)
stdio_transport = await self.exit_stack.__aenter__()
read_stream, write_stream = stdio_transport
self.session = ClientSession(read_stream, write_stream)
await self.session.__aenter__()
```
**Calling tools:**
```python
result = await self.session.call_tool(
"search_arxiv",
{
"query": query,
"max_results": max_results,
"sort_by": sort_by
}
)
```
**Learning exercise:**
```python
import asyncio
from mcp_tools.arxiv_tool import ArxivTool
async def explore_arxiv():
tool = ArxivTool()
# Connect to MCP server
connected = await tool.connect()
print(f"Connected: {connected}")
# Search for papers
papers = await tool.search_papers("quantum computing", max_results=3)
print(f"Found {len(papers)} papers:")
for paper in papers:
print(f"\n Title: {paper.get('title', 'N/A')}")
print(f" Authors: {paper.get('authors', [])[:2]}")
# Clean up
await tool.disconnect()
asyncio.run(explore_arxiv())
```
**Questions to answer:**
- What is stdio transport and why use it?
- Why do we need both `exit_stack` and `session`?
- What happens if the MCP server crashes?
- How does `call_tool` send messages to the server?
**Deep dive topics:**
- JSON-RPC protocol format
- Async context managers (what `__aenter__` and `__aexit__` do)
- Process communication (pipes and streams)
---
#### 4. `mcp_tools/llm_tool.py`
**What it does:** Calls Anthropic Claude API for summarization
**Key concepts:**
- HTTP API requests with async
- Prompt engineering
- API authentication
- Response parsing
**Important code sections:**
**API call:**
```python
message = self.client.messages.create(
model=self.model,
max_tokens=max_tokens,
messages=[
{"role": "user", "content": prompt}
]
)
summary = message.content[0].text
```
**Learning exercise:**
```python
import asyncio
from mcp_tools.llm_tool import LLMTool
async def test_llm():
tool = LLMTool() # Needs ANTHROPIC_API_KEY in .env
# Fake paper data
paper = {
"title": "Quantum Computing Fundamentals",
"summary": "This paper explores the basic principles of quantum computing...",
"authors": [{"name": "Alice"}, {"name": "Bob"}]
}
# Generate summary
summary = await tool.summarize_paper(paper, max_tokens=500)
print(f"Summary:\n{summary}")
asyncio.run(test_llm())
```
**Questions to answer:**
- How is the prompt structured for summarization?
- What's the difference between `max_tokens` in the request and actual tokens used?
- How does prompt engineering affect output quality?
- What happens if the API returns an error?
---
### Level 3: Agents (Business Logic)
#### 5. `agents/research_agent.py`
**What it does:** Autonomous paper retrieval and search optimization
**Key concepts:**
- Query enhancement (autonomous planning)
- Fallback strategies (self-correction)
- Agent initialization and cleanup
**Autonomous behaviors:**
```python
def _enhance_query(self, topic: str) -> str:
"""
Autonomous planning - agent decides how to optimize search.
"""
topic_lower = topic.lower()
enhancements = {
'ai': 'artificial intelligence machine learning',
'ml': 'machine learning',
'quantum': 'quantum computing physics',
}
for key, value in enhancements.items():
if key in topic_lower and value not in topic_lower:
return f"{topic} {value}"
return topic
```
**Self-correction:**
```python
papers = await self.arxiv_tool.search_papers(enhanced_query)
if not papers:
# Fallback: try original query
papers = await self.arxiv_tool.search_papers(topic)
```
**Learning exercise:**
```python
from agents.research_agent import ResearchAgent
async def test_research():
agent = ResearchAgent()
await agent.initialize()
# Test query enhancement
original = "AI"
enhanced = agent._enhance_query(original)
print(f"Original: {original}")
print(f"Enhanced: {enhanced}")
# Test search
papers = await agent.search("AlphaFold", max_results=3)
print(f"\nFound {len(papers)} papers")
await agent.cleanup()
asyncio.run(test_research())
```
**Questions to answer:**
- Why enhance queries? What problem does it solve?
- When should you use the fallback strategy?
- Why initialize and cleanup separately from `__init__`?
---
#### 6. `agents/analysis_agent.py`
**What it does:** Paper analysis and podcast script generation
**Key concepts:**
- Paper selection (reasoning)
- LLM-based summarization
- Script generation with prompt engineering
- Fallback content for LLM failures
**Autonomous reasoning:**
```python
async def select_best(self, papers: list, topic: str):
"""
Reasoning - evaluate and select most relevant paper.
"""
scored_papers = []
for paper in papers:
score = 0
# Has abstract
if paper.get('summary') or paper.get('abstract'):
score += 1
# Recent paper
pub_date = paper.get('published', '')
if '2024' in pub_date or '2023' in pub_date:
score += 2
scored_papers.append((score, paper))
scored_papers.sort(key=lambda x: x[0], reverse=True)
return scored_papers[0][1] if scored_papers else papers[0]
```
**Learning exercise:**
```python
from agents.analysis_agent import AnalysisAgent
async def test_analysis():
agent = AnalysisAgent()
# Mock paper data
papers = [
{"title": "Old Paper", "published": "2020-01-01", "summary": "..."},
{"title": "New Paper", "published": "2024-01-01", "summary": "..."},
]
best = await agent.select_best(papers, "quantum computing")
print(f"Selected: {best['title']}")
asyncio.run(test_analysis())
```
**Questions to answer:**
- What criteria determine "best" paper?
- Why fallback to template content instead of failing?
- How does prompt engineering affect script quality?
---
#### 7. `agents/audio_agent.py`
**What it does:** Text-to-speech conversion via ElevenLabs
**Key concepts:**
- HTTP POST with binary response
- File I/O (saving MP3 bytes)
- API timeout handling
- Voice configuration
**Learning exercise:**
```python
from agents.audio_agent import AudioAgent
async def test_audio():
agent = AudioAgent() # Needs ELEVENLABS_API_KEY
script = "Welcome to Science Storyteller. Today we explore quantum computing."
audio_path = await agent.text_to_speech(script)
if audio_path:
print(f"Audio saved to: {audio_path}")
else:
print("Audio generation failed")
asyncio.run(test_audio())
```
**Questions to answer:**
- Why does TTS take so long (30-60 seconds)?
- What happens if the API times out?
- How are MP3 bytes different from text?
---
### Level 4: Orchestration (Integration)
#### 8. `app.py` - `ScienceStoryteller` Class
**What it does:** Coordinates all agents into a complete workflow
**Key concepts:**
- Orchestrator pattern
- Error recovery
- Progress tracking
- State management
**Learning exercise:**
```python
from app import ScienceStoryteller
async def test_orchestrator():
storyteller = ScienceStoryteller()
# Test full workflow
result = await storyteller.process_topic("quantum entanglement")
summary, script, audio, paper_info, status = result
print(f"Status: {status}")
if summary:
print(f"Summary length: {len(summary)} chars")
asyncio.run(test_orchestrator())
```
**Questions to answer:**
- How does the orchestrator handle partial failures?
- Why return a tuple instead of a dict?
- What's the role of `gr.Progress()`?
---
#### 9. `app.py` - Gradio Interface
**What it does:** Web UI for user interaction
**Key concepts:**
- Gradio Blocks API
- Event handlers
- Async in Gradio
- UI layout
**Learning exercise:**
```python
# Just run the app
python app.py
# Then interact with the UI to see the flow
```
**Questions to answer:**
- How does Gradio handle async functions?
- What's the difference between `gr.Blocks` and `gr.Interface`?
- How are outputs mapped to UI components?
---
## Hands-On Exercises
### Exercise 1: Test Individual Tools
**Goal:** Verify MCP connection works
```python
# File: test_my_learning.py
import asyncio
from mcp_tools.arxiv_tool import ArxivTool
async def main():
print("Testing ArxivTool...")
tool = ArxivTool()
connected = await tool.connect()
if connected:
print("β Connected to MCP server")
papers = await tool.search_papers("AlphaFold", max_results=2)
print(f"β Found {len(papers)} papers")
for i, paper in enumerate(papers, 1):
print(f"\n{i}. {paper.get('title', 'N/A')}")
await tool.disconnect()
print("\nβ Disconnected")
else:
print("β Failed to connect")
if __name__ == "__main__":
asyncio.run(main())
```
Run: `python test_my_learning.py`
---
### Exercise 2: Trace the Async Chain
**Goal:** Understand how async calls propagate
Add print statements to trace execution:
```python
# In arxiv_tool.py
async def search_papers(self, query: str, ...):
print(f"[ArxivTool] Starting search for: {query}")
result = await self.session.call_tool("search_arxiv", {...})
print(f"[ArxivTool] Search complete, parsing results...")
return papers
# In research_agent.py
async def search(self, topic: str, max_results: int = 5):
print(f"[ResearchAgent] Enhancing query: {topic}")
enhanced = self._enhance_query(topic)
print(f"[ResearchAgent] Enhanced to: {enhanced}")
papers = await self.arxiv_tool.search_papers(enhanced)
print(f"[ResearchAgent] Got {len(papers)} papers")
return papers
```
Then run and watch the flow!
---
### Exercise 3: Mock External Dependencies
**Goal:** Test without API keys
```python
# test_mock.py
from unittest.mock import AsyncMock, Mock
from agents.research_agent import ResearchAgent
async def test_with_mock():
agent = ResearchAgent()
# Mock the arxiv_tool to avoid real API calls
agent.arxiv_tool.search_papers = AsyncMock(return_value=[
{"title": "Fake Paper 1", "summary": "Test"},
{"title": "Fake Paper 2", "summary": "Test"},
])
papers = await agent.search("test topic")
assert len(papers) == 2
print(f"β Mock test passed: {len(papers)} papers")
asyncio.run(test_with_mock())
```
---
### Exercise 4: Build a Mini Version
**Goal:** Understand the workflow by simplifying
```python
# mini_storyteller.py
import asyncio
class MiniStoryteller:
"""Simplified version to understand the flow"""
def __init__(self):
print("π Initializing agents...")
self.research = "ResearchAgent"
self.analysis = "AnalysisAgent"
self.audio = "AudioAgent"
async def process(self, topic):
print(f"\nπ Step 1: Search for '{topic}'")
await asyncio.sleep(1) # Simulate API call
papers = ["Paper 1", "Paper 2"]
print(f"π Step 2: Select best paper")
await asyncio.sleep(1)
best = papers[0]
print(f"βοΈ Step 3: Summarize '{best}'")
await asyncio.sleep(1)
summary = "This is a summary..."
print(f"ποΈ Step 4: Generate script")
await asyncio.sleep(1)
script = "Welcome to the podcast..."
print(f"π Step 5: Convert to audio")
await asyncio.sleep(2)
audio = "podcast.mp3"
print(f"β
Done!")
return summary, script, audio
async def main():
storyteller = MiniStoryteller()
result = await storyteller.process("AlphaFold")
print(f"\nResult: {result}")
asyncio.run(main())
```
---
## Common Patterns Explained
### Pattern 1: Async Context Managers
**What you see:**
```python
self.exit_stack = stdio_client(server_params)
stdio_transport = await self.exit_stack.__aenter__()
# ... use the connection ...
await self.exit_stack.__aexit__(None, None, None)
```
**What it means:**
- `__aenter__`: Setup (open connection, allocate resources)
- `__aexit__`: Cleanup (close connection, free resources)
**Better syntax:**
```python
async with stdio_client(server_params) as stdio_transport:
# Connection is open here
read_stream, write_stream = stdio_transport
# ... use streams ...
# Connection automatically closed when block exits
```
**Why the manual version in the code?**
- Need to keep connection alive for multiple operations
- Can't use `async with` because connection persists beyond one function call
---
### Pattern 2: Optional Parameters with Defaults
```python
async def search(self, topic: str, max_results: int = 5):
"""Search with default max_results"""
```
**Usage:**
```python
# Use default
papers = await agent.search("AI") # max_results=5
# Override default
papers = await agent.search("AI", max_results=10)
```
---
### Pattern 3: Type Hints
```python
async def search_papers(
self,
query: str, # Must be a string
max_results: int = 5, # Must be an int, defaults to 5
sort_by: str = "relevance" # Must be a string, defaults to "relevance"
) -> List[Dict[str, Any]]: # Returns a list of dictionaries
```
**Benefits:**
- Self-documenting code
- IDE autocomplete
- Type checking tools (mypy)
- Easier to catch bugs
---
### Pattern 4: Dictionary `.get()` with Defaults
```python
title = paper.get('title', 'Unknown') # Returns 'Unknown' if 'title' key missing
```
**Why not just `paper['title']`?**
- `paper['title']` β Raises `KeyError` if missing
- `paper.get('title', 'Unknown')` β Returns default if missing (safer)
---
### Pattern 5: List Comprehension
```python
author_names = [
author.get('name', '')
for author in authors[:5]
if isinstance(author, dict)
]
```
**Equivalent to:**
```python
author_names = []
for author in authors[:5]:
if isinstance(author, dict):
author_names.append(author.get('name', ''))
```
---
### Pattern 6: Try/Except for Error Handling
```python
try:
result = await api_call()
return result
except Exception as e:
logger.error(f"API error: {e}")
return fallback_result()
```
**Why?**
- External APIs can fail
- Network can be unreliable
- Graceful degradation instead of crashes
---
## Debugging Tips
### Tip 1: Use Print Debugging
Add strategic print statements:
```python
async def search(self, topic: str):
print(f"π [DEBUG] Searching for: {topic}")
enhanced = self._enhance_query(topic)
print(f"π [DEBUG] Enhanced to: {enhanced}")
papers = await self.arxiv_tool.search_papers(enhanced)
print(f"π [DEBUG] Found {len(papers)} papers")
return papers
```
---
### Tip 2: Check Logs
The app uses Python's logging:
```python
logging.basicConfig(
level=logging.INFO, # Change to DEBUG for more detail
format='%(levelname)s - %(name)s - %(message)s'
)
```
Run with verbose logging:
```bash
python app.py 2>&1 | tee app.log
```
---
### Tip 3: Use Python REPL
Test small pieces interactively:
```bash
$ python
>>> from utils.script_formatter import estimate_duration
>>> text = "Hello world, this is a test."
>>> duration = estimate_duration(text)
>>> print(duration)
5
```
---
### Tip 4: Check Environment Variables
```bash
# Verify API keys are set
echo $ANTHROPIC_API_KEY
echo $ELEVENLABS_API_KEY
# Or in Python
import os
print(os.getenv("ANTHROPIC_API_KEY"))
```
---
### Tip 5: Test Error Cases
```python
# Test with invalid input
result = await storyteller.process_topic("") # Empty string
result = await storyteller.process_topic("xyzinvalidtopic999") # No results
```
---
### Tip 6: Use Async Debugger
For complex async issues:
```python
import asyncio
asyncio.run(my_function(), debug=True) # Enables debug mode
```
---
## Further Resources
### Official Documentation
- **Python Async/Await**: [RealPython Guide](https://realpython.com/async-io-python/)
- **MCP Protocol**: [Official Docs](https://modelcontextprotocol.io/)
- **Anthropic Claude API**: [API Reference](https://docs.anthropic.com/claude/reference)
- **Gradio**: [Documentation](https://www.gradio.app/docs)
- **ElevenLabs**: [API Docs](https://elevenlabs.io/docs/api-reference)
### Learning Paths
**If you're new to async:**
1. Read RealPython's async guide
2. Practice with simple async examples
3. Understand event loops
4. Study this project's async chain
**If you're new to OOP:**
1. Python classes tutorial
2. Understand `self` and `__init__`
3. Practice with simple class examples
4. Study `ScienceStoryteller` class
**If you're new to MCP:**
1. Read MCP specification
2. Understand stdio transport
3. Study `ArxivTool` implementation
4. Try building your own MCP tool
### Practice Projects
**After understanding this codebase:**
1. **Add a new MCP tool**: Try Semantic Scholar instead of arXiv
2. **Add a new agent**: Create a fact-checking agent
3. **Extend functionality**: Add multiple podcast voices
4. **Improve error handling**: Better retry logic
5. **Add caching**: Cache arXiv results for 24 hours
---
## Review Checklist
Before moving on, can you answer:
- [ ] What's the difference between a class and an object?
- [ ] What does `self` refer to?
- [ ] When does `__init__` run?
- [ ] Why use `async`/`await`?
- [ ] How does the event loop work?
- [ ] What is MCP and why use it?
- [ ] How do the three agents differ?
- [ ] What does the orchestrator do?
- [ ] How does Gradio integrate with async?
- [ ] Where would you add error handling?
- [ ] What is the difference between a unit and an integration test?
---
## Your Learning Journey
**Recommended 3-Week Plan:**
### Week 1: Fundamentals
- Day 1-2: OOP basics (`__init__`, `self`, methods)
- Day 3-4: Async/await concepts
- Day 5-7: Study `utils/` and `mcp_tools/`
### Week 2: Implementation
- Day 8-10: Understand all three agents
- Day 11-12: Study orchestrator
- Day 13-14: Explore Gradio interface
### Week 3: Integration & Polish
- Day 15-17: Test full workflow
- Day 18-19: Fix bugs, improve error handling
- Day 20-21: Polish UI, prepare demo
---
**Remember:** Deep understanding takes time. Don't rush. Each module builds on the previous one. Master the basics before tackling integration!
---
**Last Updated:** November 17, 2025
**Version:** 1.0
**For:** MCP's 1st Birthday Hackathon 2025
---
## π§ͺ Testing Strategy
A good testing strategy is crucial for building reliable software. For this project, we can use a model called the "Testing Pyramid."
### Unit Tests
**Definition:** Test individual components in isolation.
- **What to test:** Pure functions, methods with no external dependencies.
- **Tools:** Python's built-in `unittest` or `pytest`.
- **Example:**
```python
import unittest
class TestArxivTool(unittest.TestCase):
def test_search_papers(self):
tool = ArxivTool()
result = asyncio.run(tool.search_papers("AI"))
self.assertGreater(len(result), 0)
```
### Integration Tests
**Definition:** Test how components work together.
- **What to test:** Interactions between modules, like agent and tool communication.
- **Tools:** `pytest` with async support.
- **Example:**
```python
async def test_agent_tool_integration():
agent = ResearchAgent()
await agent.initialize()
papers = await agent.search("AI")
self.assertIsInstance(papers, list)
self.assertGreater(len(papers), 0)
```
### End-to-End Tests
**Definition:** Test the complete workflow from start to finish.
- **What to test:** User scenarios, like submitting a topic and receiving audio.
- **Tools:** Gradio's built-in testing, Selenium for UI tests.
- **Example:**
```python
def test_gradio_interface(client):
response = client.post("/api/predict", json={"data": "AI in healthcare"})
assert response.status_code == 200
assert "audio" in response.json()
```
### Load Tests
**Definition:** Test system behavior under heavy load.
- **What to test:** How the system handles many requests at once.
- **Tools:** Locust, JMeter.
- **Example:**
```
locust -f load_test.py
```
### Security Tests
**Definition:** Identify vulnerabilities in the application.
- **What to test:** API security, data validation, authentication.
- **Tools:** OWASP ZAP, Burp Suite.
- **Example:**
```
zap-cli quick-scan --self-contained --spider -r http://localhost:7860
```
### Best Practices
- **Automate tests**: Use CI/CD pipelines to run tests automatically.
- **Test coverage**: Aim for at least 80% coverage, but prioritize critical paths.
- **Mock external services**: Use tools like `vcr.py` or `responses` to mock API calls.
- **Data-driven tests**: Use parameterized tests to cover multiple scenarios.
- **Regularly review and update tests**: As the code evolves, so should the tests.
---
|